Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn vào /h7.net/hoi-dap/toan-6/so-sanh-a-3-10-1-3-9-1-va-b-3-9-1-3-8-1--faq205231.html
Trả lời:
A = \(\frac{3^{10}+1}{3^9+1}=\frac{3.3^9+1}{3.3^8+1}=\frac{3^9+1}{3^8+1}\)= B
_Học tốt bạn nha_
A=1+5+5^2+..+5^9/1+5+5^2+...+5^8
=1+5^9/1+5+5^2+...+5^8
B=1+3+3^2+..+3^9/1+3+3^2+..+3^8
=1+3^9/1+3+3^2+..+3^8
đặt A' =1+5+5^2+...+5^8
5A'=5+5^2+5^3+...+5^9
5A'-A'=5+5^2+5^3+...+5^9-5-1-5-5^2-...-5^8
4A'=5^9-1=>A'=(5^9-1):4
tương tự B'=(3^9-1):4
A=1+5^9/(5^9-1)/4=4.5^9/5^9-1
B=1+3^9/(3^9-1)/4=4.3^9/3^9-1
=> A<B
\(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}=\frac{1+5\left(1 +5+5^2+...+5^8\right)}{1+5+5^2+...+5^8}=5+\frac{1}{1+5+5^2+...+5^8} \)
\(B=\frac{1+3+3^2+....+3^9}{1+3+3^2+....+3^8}=\frac{1+3\left(1+3+3^2+....+3^8\right)}{1+3+3^2+....+3^8}=3+\frac{1}{1+3+3^2+....+3^8}\)
\(=5+\frac{1}{1+3+3^2+....+3^8}-2\)
Có: \(\frac{1}{1+5+5^2+...+5^8}>0\) và \(\frac{1}{1+3+3^2+....+3^8}-2< 0\)
\(\Rightarrow A>B\)
\(A=\frac{3^{10}+1}{3^9+1}=\frac{3^{10}+3-2}{3^9+1}=\frac{3\left(3^9+1\right)-2}{3^9+1}=3-\frac{2}{3^9+1}\)
\(B=\frac{3^9+1}{3^8+1}=\frac{3^9+3-2}{3^8+1}=\frac{3\left(3^8+1\right)-2}{3^8+1}=3-\frac{2}{3^8+1}\)
Có \(3^9+1>3^8+1\)
\(\Rightarrow\frac{2}{3^9+1}< \frac{2}{3^8+1}\)
\(\Rightarrow3-\frac{2}{3^9+1}>3-\frac{2}{3^8+1}\)
\(\Rightarrow A>B\)
2/5 x 1/X + 1/X x 2 = 0,1
1/X x ( 2/5 + 2 ) = 0,1
1/X x 12 / 5 = 0,1
1/X = 0,1 :12/5 = 1/10 : 12/5
1/X = 1/24
Vậy X = 24