Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn xem ở câu hỏi tương tự , các cách lm bài đều ở đó , bạn tham khảo nhé
ta thấy : 1/4 > 1/9 > 1/16 > ...... > 1/2500
Mà 1/4 < 1
=> 1/4 + 1/9 + 1/16 + .... + 1/2500 < 1
\(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+.....+\frac{1}{10000}=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+.....+\frac{1}{100.100}\)
\(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+....+\frac{1}{100.100}<\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{99.100}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-....-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)\(=1-\frac{1}{100}=\frac{99}{100}<1\)
Vậy \(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+.....+\frac{1}{10000}<1\)
a)=(3/8+10/16)+(7/12+10/24)
=1+1=2
c)=(4/6+14/6)+(7/13+19/13)+(17/9+1/9)
=3+2+2=7
A = 31/32
Ta có 1 - 31/32 = 1/32
1 - 2005/2006 = 1/2006
1/32 > 1/2006
nên A < 2005/2006