K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2015

Ta có: A= 2011.2013 + 2013.2015 

            = (2012 - 1)(2012 + 1) + (2014 - 1)(2014 + 1)

            = 2012^2 + 2012 - 2012 - 1 + 2014^2 +2014 - 2014 - 1

            = 2012^2 + 2014^2 - 2

            =            B            - 2  

     Vì B - 2 < B nên A < B

3 tháng 7 2017

Ta có:

B=2012^2.

=>B=2012*2012.

=>B=2012*2011+2012.

=>B=2011*2012+2011+1.

=>B=2011*(2012+1)+1.

=>B=2011*2013+1.

Mà A=2011*2013.

Vậy A<B.

3 tháng 7 2017

Ta có: 

\(A=2011\cdot2013=\left(2012-1\right)\left(2012+1\right)\)

\(=2012^2-1< 2012^2=B\)

VẬY A<B

3 tháng 7 2017

Ta có : A = 1999 x 2001 = 1999 x (1 + 2000) = 1999 x 2000 + 1999

           B = 2000 x 2000 = 2000 x (1999 + 1) = 2000 x 1999 + 2000

Vậy A < B 

3 tháng 7 2017

Sorry mk chưa đoc kĩ đề mk làm lại nhá 

Áp dụng hàng đẳng thức (a - b)(a + b) = a2 - b2

Ta có : A = (2000 - 1)(2000 + 1) = 20002 - 1

Mà B = 20002 

Nên A < B  

Áp dụng hàng đẳng thức (a - b)(a + b) = a2 - b2

Ta có : A = (2012 - 1)(2012 + 1) = 20122 - 1

Mà B = 20122 

Nên A < B  

19 tháng 11 2018

Ta có:

\(a^{2010}+b^{2010}+a^{2012}+b^{2012}\)

\(=\left(a^{2010}+a^{2012}\right)+\left(b^{2010}+b^{2012}\right)\ge2a^{2011}+2b^{2011}\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}a^{2010}=a^{2012}\\b^{2010}=b^{2012}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=1\\b=1\end{cases}}\)

\(\Rightarrow a^{2013}+b^{2013}=2\)

Vậy \(S=2\)

21 tháng 11 2018

thank ban nha

23 tháng 9 2018

A=2012x2014=2012x(2012+2)=2012^2+4024

B=2013^2=(2012+1)^2=2012^2+2x2012+1=2012^2+2025

=>A<B 

chúc bạn học tốt~~~

23 tháng 9 2018

Bài 1 : 

\(a)\)\(A=2012.2014=\left(2013-1\right)\left(2013+1\right)=2013^2-1< 2013^2=B\)

Vậy \(A< B\)

\(b)\)\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(2A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(2A=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(2A=\left(3^{16}-1\right)\left(3^{16}+1\right)\)

\(2A=3^{32}-1\)

\(A=\frac{3^{32}-1}{2}< 3^{32}-1=B\)

\(c)\)\(A=2017^2-17^2=\left(2017-17\right)\left(2017+17\right)=2000.2034>2000.2000=2000^2=B\)

Vậy \(A>B\)