Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A= 2011.2013 + 2013.2015
= (2012 - 1)(2012 + 1) + (2014 - 1)(2014 + 1)
= 2012^2 + 2012 - 2012 - 1 + 2014^2 +2014 - 2014 - 1
= 2012^2 + 2014^2 - 2
= B - 2
Vì B - 2 < B nên A < B
Ta có:
B=2012^2.
=>B=2012*2012.
=>B=2012*2011+2012.
=>B=2011*2012+2011+1.
=>B=2011*(2012+1)+1.
=>B=2011*2013+1.
Mà A=2011*2013.
Vậy A<B.
Ta có:
\(A=2011\cdot2013=\left(2012-1\right)\left(2012+1\right)\)
\(=2012^2-1< 2012^2=B\)
VẬY A<B
Ta có : A = 1999 x 2001 = 1999 x (1 + 2000) = 1999 x 2000 + 1999
B = 2000 x 2000 = 2000 x (1999 + 1) = 2000 x 1999 + 2000
Vậy A < B
Sorry mk chưa đoc kĩ đề mk làm lại nhá
Áp dụng hàng đẳng thức (a - b)(a + b) = a2 - b2
Ta có : A = (2000 - 1)(2000 + 1) = 20002 - 1
Mà B = 20002
Nên A < B
Áp dụng hàng đẳng thức (a - b)(a + b) = a2 - b2
Ta có : A = (2012 - 1)(2012 + 1) = 20122 - 1
Mà B = 20122
Nên A < B
Ta có:
\(a^{2010}+b^{2010}+a^{2012}+b^{2012}\)
\(=\left(a^{2010}+a^{2012}\right)+\left(b^{2010}+b^{2012}\right)\ge2a^{2011}+2b^{2011}\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}a^{2010}=a^{2012}\\b^{2010}=b^{2012}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=1\\b=1\end{cases}}\)
\(\Rightarrow a^{2013}+b^{2013}=2\)
Vậy \(S=2\)
A=2012x2014=2012x(2012+2)=2012^2+4024
B=2013^2=(2012+1)^2=2012^2+2x2012+1=2012^2+2025
=>A<B
chúc bạn học tốt~~~
Bài 1 :
\(a)\)\(A=2012.2014=\left(2013-1\right)\left(2013+1\right)=2013^2-1< 2013^2=B\)
Vậy \(A< B\)
\(b)\)\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(2A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(2A=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(2A=\left(3^{16}-1\right)\left(3^{16}+1\right)\)
\(2A=3^{32}-1\)
\(A=\frac{3^{32}-1}{2}< 3^{32}-1=B\)
\(c)\)\(A=2017^2-17^2=\left(2017-17\right)\left(2017+17\right)=2000.2034>2000.2000=2000^2=B\)
Vậy \(A>B\)
a) A=4048143 và B=4048144
⇒ A < B
b) A=4052168 và B=4052169
⇒A < B