Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=1+2+2^2+2^3+...+2^{2021}+2^{2022}\)
\(\Rightarrow2A=2\left(1+2+2^2+...+2^{2022}\right)\)
\(\Rightarrow2A=2+2^3+2^4+...+2^{2023}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{2023}\right)-\left(1+2+2^2+...+2^{2022}\right)\)
\(\Rightarrow A=2^{2023}-1\)
Ta thấy: \(2^{2023}-1=2^{2023}-1\)
Vậy: \(A=B\)
Bài 1:
a) 02002 < 02023
b) 20220 = 20230
c) 549 < 5510
d) ( 4 + 5 )3 > 42 + 52
đ) 92 - 32 > ( 9 - 3 )2
Bài 2:
a) 32 x 43 - 32 + 333
= 9 x 64 - 9 + 333
= 576 - 9 + 333
= 567 + 333
= 900
b) 5 x 43 + 24 x 5 + 410
= 5 x 64 + 24 x 5 + 1
= 5 x ( 64 + 24 ) + 1
= 5 x 88 + 1
= 440 + 1
= 441
c) 23 x 42 + 32 x 5 - 40 x 12023
= 8 x 16 + 9 x 5 - 40 x 1
= 128 + 45 - 40
= 133
Bài 1 :
a) \(0^{2002}=0;0^{2023}=0\Rightarrow0^{2002}=0^{2023}\)
b) \(2022^0=1;2023^0=1\Rightarrow2022^0=2023^0\)
c) \(54^9< 55^9;55^9< 55^{10}\Rightarrow54^9< 55^{10}\)
d) \(\left(4+5\right)^3>\left(4+5\right)^2;\left(4+5\right)^2>4^2+5^2\Rightarrow\left(4+5\right)^3>4^2+5^2\)
đ) \(9^2-3^2=81-9=82;\left(9-3\right)^2=6^2=36\Rightarrow9^2-3^2>\left(9-3\right)^2\)
Cho \(A=\dfrac{2023^{30}+5}{2023^{31}+5}\) và \(B=\dfrac{2023^{31}+5}{2023^{32}+5}\). So sánh A và B
Áp dụng tính chất : Nếu \(\dfrac{a}{b}< 1\) thì \(\dfrac{a}{b}< \dfrac{a+n}{b+n}\) ( a; b; n ϵ N , b; n ≠ 0 )
Ta có \(\dfrac{2023^{31}+5}{2023^{32}+5}< 1\)
⇒ \(B=\dfrac{2023^{31}+5}{2023^{32}+5}< \dfrac{2023^{31}+5+2018}{2023^{32}+5+2018}=\dfrac{2023^{31}+2023}{2023^{32}+2023}=\dfrac{2023\left(2023^{30}+1\right)}{2023\left(2023^{31}+1\right)}=\dfrac{2023^{30}+1}{2023^{31}+1}=A\)Vậy A > B
Ta có 2023A = \(\dfrac{2023.\left(2023^{30}+5\right)}{2023^{31}+5}=\dfrac{2023^{31}+5.2023}{2023^{31}+5}\)
\(=1+\dfrac{2022.5}{2023^{31}+5}\)
Lại có 2023B = \(\dfrac{2023.\left(2023^{31}+5\right)}{2023^{32}+5}=\dfrac{2023^{32}+2023.5}{2023^{32}+5}\)
\(=1+\dfrac{2022.5}{2023^{32}+5}\)
Dễ thấy 202331 + 5 < 202332 + 5
\(\Leftrightarrow\dfrac{2022.5}{2023^{31}+5}>\dfrac{2022.5}{2023^{32}+5}\)
\(\Leftrightarrow1+\dfrac{2022.5}{2023^{31}+5}>1+\dfrac{2022.5}{2023^{32}>5}\)
\(\Leftrightarrow2023A>2023B\Leftrightarrow A>B\)
\(3B=1.3^2+2.3^3+3.3^4+...+2022.3^{2023}+2023.3^{2024}\)
\(2B=3B-B=-3-3^2-3^3-...-3^{2023}+2023.3^{2024}\)
\(2B=2023.3^{2024}-\left(3+3^2+3^3+...+3^{2023}\right)\)
Đặt
\(C=3+3^2+3^3+...+3^{2023}\)
\(3C=3^2+3^3+3^4+...+3^{2024}\)
\(2C=3C-C=3^{2024}-3\Rightarrow C=\dfrac{3^{2024}-3}{2}\)
\(\Rightarrow2B=2023.3^{2024}-\dfrac{3^{2024}-3}{2}=\)
\(=\dfrac{2.2023.3^{2024}-3^{2024}+3}{2}=\dfrac{4045.3^{2024}+3}{2}\)
\(\Rightarrow B=\dfrac{4045.3^{2024}+3}{4}\)
Lời giải:
$A=9+2.3^2+2.3^3+2.3^4+...+2.3^{2023}$
$A-9=2(3^2+3^3+3^4+...+3^{2023})$
$3(A-9)=2(3^3+3^4+3^5+...+3^{2024})$
$\Rightarrow 3(A-9)-(A-9)=2(3^{2024}-3^2)$
$2(A-9)=2.3^{2024}-18$
$\Rightarrow 2A-18=2.3^{2024}-18$
$\Rightarrow A=3^{2024}\vdots 3^{2023}$ (đpcm)
Bạn nên viết lại đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
Ta có:
\(2023^{2022}=2023\cdot2023^{2021}\)
\(2022^{2022}+2022^{2021}=2022^{2021}\cdot\left(2022+1\right)=2023\cdot2022^{2021}\)
Mà: \(2023>2022\)
\(\Rightarrow2023^{2021}>2022^{2021}\)
\(\Rightarrow2023^{2021}\cdot2023>2022^{2021}\cdot2023\)
\(\Rightarrow2023^{2022}>2022^{2022}+2022^{2021}\)
Vậy: ...
\(2023A=\dfrac{2023^{31}+4046}{2023^{31}+2}=1+\dfrac{4044}{2023^{31}+2}\)
\(2023B=\dfrac{2023^{32}+4046}{2023^{32}+2}=1+\dfrac{4044}{2023^{32}+2}\)
mà 2023^31+2<2023^32+2
nên A>B