Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
-2/15 < 0
-10/-11 > 0
nên x < y
2)
ví dụ 1 < 2 => -1 > -2
ta có 16/29 < 16/27 < 19/27
suy ra -16/29 > -16/27 > -19/27
Giải:
a) \(\dfrac{-3}{7}\) và \(\dfrac{2}{-5}\)
\(\dfrac{-3}{7}=\dfrac{-3.5}{7.5}=\dfrac{-15}{35}\)
\(\dfrac{2}{-5}=\dfrac{-2}{5}=\dfrac{-2.7}{5.7}=\dfrac{-14}{35}\)
Vì \(\dfrac{-15}{35}< \dfrac{-14}{35}\) nên \(\dfrac{-3}{7}< \dfrac{2}{-5}\)
b) \(\dfrac{-6}{7}\) và \(\dfrac{19}{23}\)
Vì \(\dfrac{-6}{7}\) là số âm mà \(\dfrac{19}{23}\) là số dương nên \(\dfrac{-6}{7}< \dfrac{19}{23}\)
c) \(\dfrac{-11}{23}\) và \(\dfrac{-13}{21}\)
\(\dfrac{-11}{23}=\dfrac{-11.13}{23.13}=\dfrac{-143}{299}\)
\(\dfrac{-13}{21}=\dfrac{-13.11}{21.11}=\dfrac{-143}{231}\)
Vì \(\dfrac{-143}{299}>\dfrac{-143}{231}\) nên \(\dfrac{-11}{23}>\dfrac{-13}{21}\)
d) \(\dfrac{-1}{5}\) và \(\dfrac{1}{100}\)
Vì \(\dfrac{-1}{5}\) là số âm mà \(\dfrac{1}{100}\) là số dương nên \(\dfrac{-1}{5}< \dfrac{1}{100}\)
Giải: (tiếp)
e) \(\dfrac{267}{-268}\) và \(\dfrac{-1347}{1343}\)
\(\dfrac{267}{-268}=\dfrac{-267}{268}=\dfrac{-267.449}{268.449}=\dfrac{-119883}{120332}\)
\(\dfrac{-1347}{1343}=\dfrac{-1347.89}{1343.89}=\dfrac{-119883}{119527}\)
Vì \(\dfrac{-119883}{120332}>\dfrac{-119883}{119527}\) nên \(\dfrac{267}{-268}>\dfrac{-1347}{1343}\)
f) \(\dfrac{-13}{38}\) và \(\dfrac{29}{-88}\)
\(\dfrac{-13}{38}=\dfrac{-13.29}{38.29}=\dfrac{-377}{1102}\)
\(\dfrac{29}{-88}=\dfrac{-29}{88}=\dfrac{-29.13}{88.13}=\dfrac{-377}{1144}\)
Vì \(\dfrac{-377}{1102}< \dfrac{-377}{1144}\) nên \(\dfrac{-13}{38}< \dfrac{29}{-88}\)
g) \(\dfrac{4}{9}\) và \(\dfrac{13}{18}\)
\(\dfrac{4}{9}=\dfrac{4.2}{9.2}=\dfrac{8}{18}\)
Vì \(\dfrac{8}{18}< \dfrac{13}{18}\) nên \(\dfrac{4}{9}< \dfrac{13}{18}\)
h) \(\dfrac{-15}{7}\) và \(\dfrac{-6}{5}\)
\(\dfrac{-15}{7}=\dfrac{-15.5}{7.5}=\dfrac{-75}{35}\)
\(\dfrac{-6}{5}=\dfrac{-6.7}{5.7}=\dfrac{-42}{35}\)
Vì \(\dfrac{-75}{35}< \dfrac{-42}{35}\) nên \(\dfrac{-15}{7}< \dfrac{-6}{5}\)
(Sửa \(cn-bm\rightarrow cn-dm\))
Ta có :
\(\left\{{}\begin{matrix}ad-bc=1\\cn-dm=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}ad=1+bc\\cn=1+dm\end{matrix}\right.\)
\(\dfrac{x}{y}=\dfrac{a}{b}.\dfrac{d}{c}=\dfrac{ad}{bc}=\dfrac{1+bc}{bc}=1+\dfrac{1}{bc}>1\left(bc>0\right)\)
\(\Rightarrow x=\dfrac{a}{b}>y=\dfrac{c}{d}\left(2\right)\)
\(\dfrac{y}{z}=\dfrac{c}{d}.\dfrac{n}{m}=\dfrac{cn}{dm}=\dfrac{1+dm}{dm}=1+\dfrac{1}{dm}>1\left(dc>0\right)\)
\(\Rightarrow y=\dfrac{c}{d}>z=\dfrac{m}{n}\left(2\right)\)
\(\left(1\right);\left(2\right)\Rightarrow x>y>z\)
a, \(\frac{15}{106}\)và \(\frac{21}{133}\)
Ta có:
\(\frac{15}{106}< \frac{15}{100}=\frac{3}{20}=\frac{21}{140}< \frac{21}{133}\)
\(\Rightarrow\frac{15}{106}< \frac{21}{133}\)
Vậy ........
b, \(\frac{31}{100}\)và \(\frac{89}{150}\)
Ta có:
\(\frac{31}{100}< \frac{31}{93}=\frac{1}{3}=\frac{50}{150}< \frac{89}{150}\)
\(\Rightarrow\frac{31}{100}< \frac{89}{150}\)
Vậy........
c, \(\frac{2020}{2019}\)và \(\frac{2021}{2020}\)
Ta có:
\(\frac{2020}{2019}-1=\frac{1}{2019}\) ;
\(\frac{2021}{2020}-1=\frac{1}{2020}\)
Vì \(\frac{1}{2019}>\frac{1}{2020}\)
\(\Rightarrow\frac{2020}{2019}-1>\frac{2021}{2020}-1\)
\(\Rightarrow\frac{2020}{2019}>\frac{2021}{2020}\)
Vậy .........
d, n+2019/n+2021 và n+2020/n+2022
Câu d bn tự lm nhé
\(\frac{127}{-128}=\frac{-127}{128}\Rightarrow\frac{-128}{128}=-1\left(1\right).\)
\(\frac{-1345}{1344}=\frac{1344}{1344}=-1\left(2\right)\)
Từ (1) và (2) ta suy ra :
\(\Rightarrow\frac{-1345}{1344}=-1=\frac{127}{-128}\)
\(\Rightarrow\frac{-1345}{1344}=\frac{127}{-128}\)
so sánh bằng phân số trung gian
vì \(\frac{106}{204}\)> \(\frac{106}{206}\)nên \(\frac{106}{204}\)> \(\frac{107}{206}\)