Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
+) \(3^{2n}=\left(3^2\right)^n=9^n\)
+) \(2^{3n}=\left(2^3\right)^n=8^n\)
Vì 9>8 nên \(3^{2n}>2^{3n}\)
b) Ta có: \(5^{23}=5.5^{22}\)
Vì \(5.5^{22}< 6.5^{22}\) nên \(5^{23}< 6.5^{22}\)
c) Ta có: +) \(27^{15}=\left(3^3\right)^{15}=3^{45}\)
+) \(81^{11}=\left(3^4\right)^{11}=3^{44}\)
Vì \(3^{45}>3^{44}\) nên \(27^{15}>81^{11}\)
2:
b=2000*2004
=(2002-2)*(2002+2)
=2002^2-4
=>b<a
1:
a: \(=8\cdot9\left(14+17+19\right)=72\cdot50=3600\)
Bài 1:
\(8\times9\times14+6\times17\times12+19\times4\times18\)
\(=8\times9\times14+3\times2\times17\times2\times2\times3+19\times4\times2\times9\)
\(=8\times9\times14+17\times8\times9+19\times8\times9\)
\(=8\times9\times\left(14+17+19\right)\)
\(=8\times9\times50\)
\(=72\times5\times10\)
\(=360\times10\)
\(=3600\)
Bài 2:
Ta có:
\(a=2022\times2022\)
Và: \(b=2000\times2004\)
Mà: \(2022>2000,2022>2004\)
\(\Rightarrow2022\times2022>2000\times2004\)
\(\Rightarrow a>b\)
ta có a = ( 2000 + 2 ) x 2002
a = 2002 x 2002 + 2 x 2002
b = 2000 x ( 2002 + 2 )
b = 2000 x 2002 + 2 x 2000
Ta có vì : 2000 x 2002 = 2000 x 2002
vậy ta so sánh : 2 x 2002 và 2 x 2000
Vì 2 x 2002 > 2 x 2000
=> a > b
a = ( 2000 + 2 )²
b = 2000 x ( 2000 + 4 )
=> a > b
Vì a = ( 2000 + 2 )² = 4008004
b = 2000 x ( 2000 + 4 ) = 4008000
A = 299. ( 300 + 1 ) = 299 . 300 + 299 . 1
B = ( 299 + 1 ) . 300 = 299.300 + 1. 300
Ta thấy : A và B đều có 299.300
A có 299 . 1 ; B có 1 . 300
=> B > A
21/40>13/38 vì cả tử số và mẫu số của phân số 21/40 lớn hơn tử số và mẫu số của phân số 13/38.
23/27>23/30 vì có mẫu số bé hơn nên phân số đó lớn hơn.
19/44>18/41 vì cả tử số và mẫu số của phân số 19/44 lớn hơn tử số và mẫu số của phân số 18/41.
vậy A>B.
333^444 = 111^444 . 3^444 = 111^444 . 81^111 > 8^111 . 111^444