Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(4^n=2^{n+1}\)
\(\Rightarrow2^{2n}=2^{n+1}\)
\(\Rightarrow2n=n+1\)
\(\Rightarrow n=1\)
b) \(16=\left(n-1\right)^4\)
\(\Rightarrow2^4=\left(n-1\right)^4\)
\(\Rightarrow n-1=2\)
\(\Rightarrow n=3\)
c) \(125=\left(2n+1\right)^3\)
\(\Rightarrow5^3=\left(2n+1\right)^3\)
\(\Rightarrow2n+1=5\)
\(\Rightarrow2n=4\)
\(\Rightarrow n=2\)
a, 4n = 2n+1
(22)n = 2n+1
22n = 2n+1
2n = n + 1
2n - n = 1
n = 1
b, 16 = (n-1)4
24 = (n-1)4
2 = n-1
n = 3
c, 125 = (2n + 1)3
53 = (2n+1)3
5 = 2n + 1
2n = 4
n = 2
đặt 2n + 34 = a^2
34 = a^2-n^2
34=(a-n)(a+n)
a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)
=> a-n 1 2
a+n 34 17
Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ
Vậy ....
Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.
=> S= (1004+14).100:2=50 900 ko là SCP
Lời giải:
$2n+1\vdots n+5$
$\Rightarrow 2(n+5)-9\vdots n+5$
$\Rightarrow 9\vdots n+5$
Mà $n+5\geq 5$ với $n$ là số tự nhiên.
$\Rightarrow n+5=9$
$\Rightarrow n=4$
Bài 1:
Đặt $20x=25y=30z=t$ với $t$ là số tự nhiên khác 0.
$\Rightarrow x=\frac{t}{20}; y=\frac{t}{25}; z=\frac{t}{30}$
Để $x,y,z$ là stn thì $t\vdots 20,25,30$
$\Rightarrow t=BC(20,25,30)$
Để $x,y,z$ nhỏ nhất và khác 0 thì $t$ nhỏ nhất và khác 0
$\Rightarrow t=BCNN(20,25,30)$ sao cho $t\neq 0$
$\Rightarrow t=300$
$\Rightarrow x=\frac{t}{20}=\frac{300}{20}=15, y=\frac{t}{25}=\frac{300}{25}=12; z=\frac{300}{30}=10$
Bài 2:
$2n+1\vdots n-1$
$\Rightarrow 2(n-1)+3\vdots n-1$
$\Rightarrow 3\vdots n-1$
$\Rightarrow n-1\in \left\{1; -1; 3;-3\right\}$
$\Rightarrow n\in \left\{3; 0; 4; -2\right\}$
22n = (-4)10
=> 4n = (-4)10
=> 4n = [4.(-1)]10
=> 4n = 410.(-1)10
=> 4n = 410
=> n = 10