K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2015

25 = 32 = 1 (mod 31)

=> (25)400 = 1400 = 1 (mod 31)

=> 22000 = 1 (mod 31)

=> 22000.22 = 2(mod 31)

=> 22002 = 4 (mod 31)

=> 22002 - 4 = 0 (mod 31)

Vậy... 

20 tháng 10 2015

Bạn vào câu hỏi tương tự nhé !!!

2 tháng 6 2015

xét các th

th1)n=3k (k thuộc N)

=>3^2n+3^n+1=3^2.3k+3^3k+1

=531441^k+27^k+1

do 531441 đồng dư với 1 (mod 13)=>531441^k đồng dư với 1(mod 13)

27 đồng dư với 1 (mod13)=>27^k đồng dư với 1(mod13)

1 đồng dư với 1(mod 13)

=>531441^k+27^k+1 đồng dư với 1+1+1=3(mod13)

=>531441^k+27^k+1 chia 13 dư 3<=>3^2n+36n+1 chia 13 dư 3

th2)n=3k+1(k thuộc N)

=>3^2n+3^n+1=3^2.(3k+1)+3^3k+1+1

=9^3k+1 +27^k.3+1

=729^k.9 +27^k.3+1

729^k.9 đồng dư với 9(mod 13)

27^k.3 đồng dư với 2 (mod 13)

1 đồng dư với 1 (mod13)

=>729^k.9+27^k.3+1 đồng dư vơi 1+9+2=13=0(mod 13)

=>3^2n+3^n1 chia hết cho 13

th3)n=3k+2

=>=9^3k+2 +3^3k+2 +1=729^k.81+27^k.9+1

729^k.81 đồng dư với 3 (mod 13)

27k.9 đồng dư với 9(mod 13)

1 đồng dư với 1(mod 13)

=>729^k.81+27^k.9+1 đồng dư với 3+9+1=13(mod 13)

=>3^2n +3^n+1 chia hết cho 13

vậy với n =3k+1 hoặc 3k+2 (k thuộc N) thì 3^2n +3^n +1 chia hết cho 13

2 tháng 6 2015

Xét n=3k, k\(\in\)|N

32n + 3n + 1 = 36k + 33k +1 

                    = 33.2k + 33k +1

                    =(33)2k + 33k +1

                    =272k + 27k +1

27 đồng dư với 1 (mod 13)

=> 27k đồng dư với 1k (mod 13)

=>272k đồng dư với 12k (mod 13)

=>272k + 27k +1 đồng dư với 3 (mod 13)

=> 3k ko chia hết cho 13.

Xét n=3k+1, k\(\in\)|N

32n + 3n + 1= 36k+1 + 33k+1 +1

                   = (32)3k.3 + 33k . 3 +1

                   = 9.272k.3+27k.3+1

đồng dư với 13 (mod 13)

=> 9.272k.3+27k.3+1 chia hết cho 13.

=>3k+1 chia hết cho 13

Xét 3k+2, k\(\in\)|N

32n + 3n + 1=36k+2 + 33k+2 +1

                   =81k.9+27k.9+1

đồng dư với 91 (mod 13)

=>32n + 3n + 1 chia hết cho 13

=> 3k+2 chia hết cho 13.

Vậy n=3k+1 hoặc 3k+2 chia hết cho 13.

 

 

2 tháng 6 2015

thấy bạn tự ra đề tự làm mà

3 tháng 10 2017

a) bạn ghi sai đề

b) Ta có\(10\equiv1\left(mod3\right)\)

\(\Rightarrow10^{100}\equiv1\left(mod3\right)\)

\(\Rightarrow10^{100}+14\equiv15\left(mod3\right)\)

\(15\equiv0\left(mod3\right)\)

\(\Rightarrow10^{100}+14\equiv0\left(mod3\right)\)

\(\Rightarrow10^{100}+14⋮3\)

NV
8 tháng 1

Đặt \(A=7.5^{2n}+12.6^n=7.25^n+12.6^n\)

Do \(25\equiv6\left(mod19\right)\Rightarrow25^n\equiv6^n\left(mod19\right)\)

\(\Rightarrow A\equiv7.6^n+12.6^n\left(mod19\right)\)

\(\Rightarrow A\equiv19.6^n\left(mod19\right)\)

Do \(19.6^n⋮19\Rightarrow A⋮19\)

8 tháng 1

A = 7.52n + 12.6n

A = 7.(52)n + 12.6n

A = 7.25n + 12.6n

25  \(\equiv\) 6 (mod 19)

25n \(\equiv\) 6n (mod 19)

7    \(\equiv\) - 12 (mod 19)

⇒ 7.25n \(\equiv\) -12.6n (mod 19)

⇒ 7.25n -( -12.6n) ⋮ 19

⇒ 7.25n + 12.6n   ⋮ 19

 

 

22 tháng 10 2015

Ta thấy: 999993 đồng dư với 3(mod 5)

=>9999932 đồng dư với 32(mod 5)

=>9999932 đồng dư với 9(mod 5)

=>9999932 đồng dư với 4(mod 5)

=>9999932 đồng dư với -1(mod 5)

=>(9999932)999 đồng dư với (-1)999(mod 5)

=>9999931998 đồng dư với -1(mod 5)

=>9999931998 đồng dư với 4(mod 5)

=>9999931998.999993 đồng dư với 4.3(mod 5)

=>9999931999 đồng dư với 12(mod 5)

=>9999931999 đồng dư với 2(mod 5)

Lại có: 555557 đồng dư với 2(mod 5)

=>5555572 đồng dư với 22(mod 5)

=>5555572 đồng dư với 4(mod 5)

=>5555572 đồng dư với -1(mod 5)

=>(5555572)998 đồng dư với (-1)998(mod 5)

=>5555571996 đồng dư với 1(mod 5)

=>5555571996.555553 đồng dư với 1.2(mod 5)

=>5555571997 đồng dư với 2(mod 5)

                =>9999931999-5555571997đồng dư với 2-2(mod 5)

                =>9999931999-5555571997đồng dư với 0(mod 5)

                =>9999931999-5555571997 chia hết cho 5