Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
a: Xét ΔABM có
AC là đường trung tuyến
AC=MB/2
Do đó: ΔABM vuông tại A
b: Xét ΔMCN và ΔNAP có
MC=NA
\(\widehat{MCN}=\widehat{NAP}\)
CN=AP
Do đó:ΔMCN=ΔNAP
Suy ra: MN=NP
Cm tương tự, ta được: ΔNAP=ΔPBM
Suy ra: NP=PM
hay MN=NP=PM
=>ΔMNP đều
a) Xét ΔABC có:
F là trung điểm của AB(do CF là đường trung tuyến ứng với cạnh AB của ΔABC)
E là trung điểm của AC(do BE là đường trung tuyến ứng với cạnh AC của ΔABC)
Do đó: FE là đường trung bình của ΔABC(định nghĩa đường trung bình của tam giác)
⇒FE//BC và \(FE=\frac{BC}{2}\)(định lí 2 về đường trung bình của tam giác)(1)
Xét ΔGBC có
I là trung điểm của GB(gt)
J là trung điểm của GC(gt)
Do đó: IJ là đường trung bình của ΔGBC(định nghĩa đường trung bình của tam giác)
⇒IJ//BC và \(IJ=\frac{BC}{2}\)(định lí 2 về đường trung bình của tam giác)(2)
Từ (1) và (2) suy ra FE//IJ và FE=IJ
Xét tứ giác EFIJ có FE//IJ(cmt) và FE=IJ(cmt)
nên EFIJ là hình bình hành(dấu hiệu nhận biết hình bình hành)
b) Để hình bình hành EFIJ là hình chữ nhật thì hai đường chéo FE và IJ bằng nhau
mà G là giao điểm của hai đường chéo FE và IJ
nên GF=GE=GI=GJ
Ta có: GB=GI*2(do I là trung điểm của GB)
GC=2*GJ(do J là trung điểm của GC)
nên GB=GC
Ta có: GF+GC=FC(do F,G,C thẳng hàng)
GE+GB=BE(do B,G,E thẳng hàng)
mà GF=GE(cmt)
và GC=GB(cmt)
nên FC=BE
Xét ΔABC có
CF là đường trung tuyến ứng với cạnh AB(gt)
BE là đường trung tuyến ứng với cạnh AC(gt)
CF=BE(cmt)
Do đó: ΔABC cân tại A(định lí tam giác cân)
Vậy: Khi ΔABC có thêm điều kiện AB=AC thì hình bình hành EFIJ là hình chữ nhật
c) Ta có: BE⊥CF(gt)
nên FJ⊥IE
Hình bình hành EFJI có FJ⊥JE(cmt)
nên EFJI là hình thoi(dấu hiệu nhận biết hình thoi)
Vậy: Khi BE⊥CF thì hình bình hành EFJI là hình thoi
a: Xét ΔABC có
F là trung điểm của AB
E là trung điểm của AC
Do đó: FE là đường trung bình
=>FE//BC và FE=BC/2(1)
Xét ΔGBC có
I là trung điểm của GB
J là trung điểm của GC
Do đó: IJ là đường trung bình
=>IJ//BC và IJ=BC/2(2)
Từ (1) và (2) suy ra EF//JI và EF=JI
=>EFIJ là hình bình hành
c: Khi BE\(\perp\)CF thì FJ\(\perp\)EI
=>EFIJ là hình thoi
a: Xét ΔABC có
F là trung điểm của AB
E là trung điểm của AC
DO đó: FE là đường trung bình
Suy ra: FE//BC và FE=BC/2(1)
Xét ΔGBC có
I là trung điểm của GB
J là trung điểm của GC
Do đó: IJ là đường trung bình
Suy ra: IJ//BC và IJ=BC/2(2)
Từ (1) và (2) suy ra EF//IJ và EF=IJ
hay EFIJ là hình bình hành
b: Xét ΔAGC có
E là trung điểm của AC
J là trung điểm của GC
Do đó: EJ là đường trung bình
=>EJ//AG
Hình bình hành JIFE trở thành hình chữ nhật khi FE\(\perp\)EJ
=>AG\(\perp\)BC
Xét ΔABC có
AG là đường trung tuyến
AG là đường cao
Do đó: ΔABC cân tại A
hay AB=AC
c: Hình bình hành EFIJ có FJ\(\perp\)EI
nên EFIJ là hình thoi