Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ABC có AB = AC (gt) => tam giác ABC cân tại A
=> tia phân giác góc A là AM vuông góc với cạnh BC (trong 1 tam giác cân, tia phân giác góc ở đỉnh cũng là đường vuông góc với cạnh đáy của tam giác đó) (khúc này nếu thầy bạn không có dạy thì nhắn tin cho mình để mình chứng minh vuông góc bằng hai tam giác bằng nhau)
Ta có: IH vuông góc BC (gt) (1)
AM vuông góc BC (cmt) (2)
=> Từ (1)(2) suy ra: IH // AM (cùng vuông góc với BC)
=> góc BIH = góc BAM (đồng vị)
Mà góc BAM = 2 lần góc BAC (do tia AM là tia phân giác)
=> góc BIH = 2 lần góc BAC
Vậy góc BIH = 2 lần góc BAC
b: Ta có: ΔBAC cân tại A
mà AM là đường phân giác
nên M là trung điểm của BC
a) Xét \(\Delta AMB\)và \(\Delta AMC\)có:
AB = AC (gt)
\(\widehat{BAM}=\widehat{CAM}\)(AM là tia phần giác của góc A)
AM là cạnh chung
\(\Rightarrow\Delta AMB=\Delta AMC\left(c.g.c\right)\)
b) Ta có: \(\Delta AMB=\Delta AMC\)(theo a)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}\)(2 góc tương ứng)
Mà \(\widehat{AMB}+\widehat{AMC}=180^o\)(2 góc kề bù)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=90^o\)
\(\Rightarrow AM\perp BC\)
Lại có: \(IH\perp BC\Rightarrow AM//IH\)
\(\Rightarrow\widehat{BIH}=\widehat{BAM}\)(2 gó so le trong)
Mà \(\widehat{BAM}=\frac{1}{2}\cdot\widehat{BAC}\)(AM là tia p/g của góc A)
\(\Rightarrow\widehat{BIH}=\frac{1}{2}\cdot\widehat{BAC}\)
hay \(\widehat{BAC}=2\widehat{BIH}\)
a: Xét ΔAMB và ΔAMC có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó:ΔAMB=ΔAMC
b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
\(\widehat{EAM}=\widehat{FAM}\)
Do đó:ΔAEM=ΔAFM
Suy ra:ME=MF
hay ΔMEF cân tại M
c: Ta có: AE=AF
ME=MF
Do đó: AM là đường trung trực của FE
hay AM⊥FE
a, Xét tam giác AMB và tam giác AMC có
AM _ chung
AB = AC
^MAB = ^MAC
Vậy tam giác AMB = tam giác AMC (c.g.c)
b, Xét tam giác AEM và tam giác AFM có
AM _ chung
^MAE = ^MAF
Vậy tam giác AEM = tam giác AFM (ch-gn)
=> AE = AF ( 2 cạnh tương ứng )
=> EM = FM ( 2 cạnh tương ứng )
Xét tam giác MEF có EM = FM
Vậy tam giác MEF cân tại M
c, AE/AB = AF/AC => EF // BC
mà tam giác ABC cân tại A có AM là phân giác
đồng thời là đường cao
=> AM vuông BC
=> AM vuông EF
a, xét tam giác AMB và tam giác AMC có:
AB=AC(gt)
\(\widehat{BAM}\) =\(\widehat{CAM}\)(gt)
AM chung
suy ra tam giác AMB= tam giác AMC(c.g.c)
b,xét tam giác AHM và tam giác AKM có:
AM cạnh chung
\(\widehat{HAM}\)=\(\widehat{KAM}\)(gt)
suy ra tam giác AHM=tam giác AKM(CH-GN)
Suy ra AH=AK
c,gọi I là giao điểm của AM và HK
xét tam giác AIH và tam giác AIK có:
AH=AK(theo câu b)
\(\widehat{IAH}\)=\(\widehat{IAK}\)(gt)
AI chung
suy ra tam giác AIH=tam giác AIK (c.g.c)
Suy ra \(\widehat{AIH}\)=\(\widehat{AIK}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AIH}\)=\(\widehat{AIK}\)= 90 độ
\(\Rightarrow\)HK vuông góc vs AM
a) Xét ΔAMB và ΔAMC ta có:
AB = AC (gt) (1)
góc BAM = góc CAM (gt) (2)
AM là cạnh chung (3)
Từ (1),(2),(3) ⇒ΔAMB=ΔAMC (C-G-C)
b) *Xét hai tam giác vuông AHM và AKM ta có:
AM là cạnh huyền chung (3)
góc BAM = góc CAM (gt) (2)
Vậy ΔAHM=ΔAKM (cạnh huyền-góc nhọn) (4)
* Từ (4) ⇒AH=AK⇒ (2 cạnh tương ứng)
a: Xét ΔAMB và ΔAMC có
AM chung
\(\widehat{MAB}=\widehat{MAC}\)
AB=AC
Do đó: ΔAMB=ΔAMC
b: Ta có: ΔAMB=ΔAMC
=>MB=MC
=>M là trung điểm của BC
c: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM\(\perp\)BC
Ta có: AM\(\perp\)BC
IH\(\perp\)BC
Do đó: AM//IH
=>\(\widehat{BIH}=\widehat{BAM}\)
mà \(\widehat{BAC}=2\cdot\widehat{BAM}\)(AM là phân giác của góc BAC)
nên \(\widehat{BAC}=2\cdot\widehat{BIH}\)