K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
23 tháng 8 2021

a . ta có : \(1\le1+\sqrt{2-x}\Rightarrow GTNN=1\)

\(-2\le\sqrt{x-3}-2\Rightarrow GTNN=-2\)

b. \(0\le\sqrt{4-x^2}\le2\)

\(\sqrt{2x^2-x+3}=\sqrt{2\left(x^2-\frac{x}{2}+\frac{1}{16}\right)+\frac{23}{8}}=\sqrt{2\left(x-\frac{1}{4}\right)^2+\frac{23}{8}}\ge\frac{\sqrt{46}}{4}\)

vậy \(GTNN=\frac{\sqrt{46}}{4}\)

ta có : \(0\le-x^2+2x+5=-\left(x-1\right)^2+6\le6\)

\(\Rightarrow1-\sqrt{6}\le1-\sqrt{-x^2+2x+5}\le1\)Vậy \(\hept{\begin{cases}GTNN=1-\sqrt{6}\\GTLN=1\end{cases}}\)

27 tháng 7 2017

1 ) \(A=\sqrt{x-2}+\sqrt{4-x}\)

ĐKXĐ : \(2\le x\le4\)

\(\Rightarrow A^2=x-2+4-x+2\sqrt{\left(x-2\right)\left(4-x\right)}=2+2\sqrt{\left(x-2\right)\left(4-x\right)}\)

Áp dụng bđt AM - GM ta có : 

\(2\sqrt{\left(x-2\right)\left(4-x\right)}\le x-2+4-x=2\)

\(\Rightarrow A^2\le2+2=4\Rightarrow-2\le A\le2\)

Mà A > 0 nên ko thể có min = - 2 nên \(2\le x\le4\) ta chọn x = 2

=> A = \(\sqrt{2}\)

Vậy \(\sqrt{2}\le A\le2\)

NV
2 tháng 9 2021

\(P\le\sqrt{2\left(3x-5+7-3x\right)}=2\)

\(P_{max}=2\) khi \(3x-5=7-3x\Rightarrow x=2\)

\(A=2\left(x-1\right)+\dfrac{9}{x-1}+2\ge2\sqrt{\dfrac{18\left(x-1\right)}{x-1}}+2=6\sqrt{2}+2\)

\(A_{min}=6\sqrt{2}+2\) khi \(x=\dfrac{2+3\sqrt{2}}{2}\)

23 tháng 8 2019

ĐKXĐ:

 \(\sqrt{x-5}\ge0\Rightarrow x\ge5\)

\(\sqrt{7-x}\ge0\Rightarrow x\le7\)

=> Pmax =2 tại x=7

23 tháng 8 2019

DKXD:\(5\le x\le7\)

GTLN: \(P=\sqrt{x-5}+\sqrt{7-x}=1.\sqrt{x-5}+1.\sqrt{7-x}\)

                                  \(\le\frac{1^2+\left(\sqrt{x-5}\right)^2}{2}+\frac{1^2+\left(\sqrt{7-x}\right)^2}{2}\left(bdtCOSI\right)\)

                                    \(=\frac{2+x-5+7-x}{2}=2\)

                       "="\(\Leftrightarrow\hept{\begin{cases}1=\sqrt{x-5}\\1=\sqrt{7-x}\\7\ge x\ge5\end{cases}}\Leftrightarrow x=6\)

Vậy..............................................................

GTNN: ta sẽ chứng minh: \(P\ge\sqrt{2}\)

 bđt có thể viết lại thành:\(\sqrt{x-5}+\sqrt{7-x}\ge\sqrt{2}\Leftrightarrow\left(\sqrt{x-5}+\sqrt{7-x}\right)^2\ge\left(\sqrt{2}\right)^2\)

                                       \(\Leftrightarrow x-5+7-x+2\sqrt{\left(x-5\right)\left(7-x\right)}\ge2\Leftrightarrow2+2\sqrt{\left(x-5\right)\left(7-x\right)}\ge2\)

                                       \(\Leftrightarrow2\sqrt{\left(x-5\right)\left(7-x\right)}\ge0\)(đúng với mọi x thỏa mãn \(7\ge x\ge5\))

          "="\(\Leftrightarrow\hept{\begin{cases}2\sqrt{\left(x-5\right)\left(7-x\right)}\\7\ge x\ge5\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=7\end{cases}}}\)

                      Vậy..........

18 tháng 9 2023

a) \(A=\sqrt[]{x^2-2x+5}\)

\(\Leftrightarrow A=\sqrt[]{x^2-2x+1+4}\)

\(\Leftrightarrow A=\sqrt[]{\left(x+1\right)^2+4}\)

mà \(\left(x+1\right)^2\ge0,\forall x\in R\)

\(A=\sqrt[]{\left(x+1\right)^2+4}\ge\sqrt[]{4}=2\)

Dấu "=" xảy ra khi và chỉ khi \(x+1=0\Leftrightarrow x=-1\)

Vậy \(GTNN\left(A\right)=2\left(khi.x=-1\right)\)

b) \(B=5-\sqrt[]{x^2-6x+14}\)

\(\Leftrightarrow B=5-\sqrt[]{x^2-6x+9+5}\)

\(\Leftrightarrow B=5-\sqrt[]{\left(x-3\right)^2+5}\left(1\right)\)

Ta có : \(\left(x-3\right)^2\ge0,\forall x\in R\)

\(\Leftrightarrow\left(x-3\right)^2+5\ge5,\forall x\in R\)

\(\Leftrightarrow\sqrt[]{\left(x-3\right)^2+5}\ge\sqrt[]{5},\forall x\in R\)

\(\Leftrightarrow-\sqrt[]{\left(x-3\right)^2+5}\le-\sqrt[]{5},\forall x\in R\)

\(\Leftrightarrow B=5-\sqrt[]{\left(x-3\right)^2+5}\le5-\sqrt[]{5},\forall x\in R\)

Dấu "=" xả ra khi và chỉ khi \(x-3=0\Leftrightarrow x=3\)

Vậy \(GTLN\left(B\right)=5-\sqrt[]{5}\left(khi.x=3\right)\)