Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 + 2 + 3 +...+ \(x\) = \(\overline{aaa}\)
Đặt 1 + 2 + 3 +...+ \(x\) = B
xét dãy số
1; 2; 3; ...; \(x\)
Dãy số trên là dãy số cách đều với khoảng cách là: 2 - 1 = 1
Dãy số trên có số số hạng là: (\(x\) - 1): 1 + 1 = \(x\)
Tổng B = ( \(x\) + 1) \(\times\) \(x\) : 2 = \(\overline{aaa}\)
(\(x\) + 1) \(\times\) \(x\) = \(\overline{aaa}\) \(\times\) 2
(\(x\) + 1) \(\times\) \(x\) = 2 \(\times\) 111 \(\times\) a
(\(x\) + 1) \(\times\) \(x\) = 2 \(\times\) 3 \(\times\) 37 \(\times\) a
(\(x\) + 1)\(\times\) \(x\) = 37\(\times\)6\(\times\)a = 74\(\times\)3\(\times\)a = 111 \(\times\) 2 \(\times\) a
⇒ 6 \(\times\) a = 36; 38; 3 \(\times\) a = 73; 75; 2 \(\times\) a = 110; 112
Lập bảng ta có:
6 \(\times\) a | 36 | 38 |
a | 6 | \(\dfrac{19}{3}\)(loại) |
3 \(\times\) a | 73 | 75 |
a | \(\dfrac{73}{3}\) (loại) | \(\dfrac{75}{3}\) (loại) |
2 \(\times\) a | 110 | 112 |
a | 55 (loại) | 56 (loại) |
Vậy a = 6 ⇒ (\(x\) + 1) \(\times\) \(x\) = 37 \(\times\) 36 ⇒ \(x\) = 36
Đáp số \(x\) = 36; a = 6
Ta thấy rằng \(1+2+3+...+x=\dfrac{x\left(x+1\right)}{2}\) nên điều kiện đề bài tương đương với \(\dfrac{x\left(x+1\right)}{2}=\overline{aaa}=100a+10a+a\) \(=111a\)
\(\Leftrightarrow x\left(x+1\right)=222a\). Ta thấy \(x\ge11\) vì nếu không \(x^2+x\le110< 111\). Tương tự thì \(x\le31\) vì nếu không \(x^2+x\ge1056>999\). Từ đó suy ra \(11\le x\le31\). Mặt khác, \(x\left(x+1\right)=222a\) nghĩa là \(x\left(x+1\right)⋮222\). Nhưng do \(x\) và \(x+1\) nguyên tố cùng nhau nên \(x⋮222\) hoặc \(x+1⋮222\). Nhưng với \(11\le x\le31\) thì rõ ràng điều này không thể thỏa mãn.
Vậy, không tồn tại số tự nhiên \(x\) nào thỏa mãn yêu cầu bài toán.
Ta có: 1+2+3+4+...+x=aaa
<=>\(\frac{\left(x+1\right)x}{2}=111a\)
<=> (x+1)x = 37*3*2*a
<=> (x+1)x = 37*6*a
Vì x+1 và x là 2 STN liên tiếp nên 37 và 6a là 2 STN liên tiếp
=> 6a=36 hoặc 6a=38
<=> a=6 hoặc a= 38/6
Mà a là chữ số nên a=6
=> (x+1)x= 36 * 37
<=> x=36
Vậy x=36
Ta có công thức sau: 1 + 2 + 3 + 4 +...+ x = x(x + 1)/2
Với x lẻ => x = 2k + 1 (k là số tự nhiên)
=> 1 + 2 + 3 + 4 +...+ x
= 1 + 2 + 3 +... + 2k + (2k+1)
= [1 + 2 + 3 +... + 2k] + (2k + 1)
= [ (1 + 2k) + (2 + 2k - 1) + ....] + (2k + 1).
Ta có từ 1 -> 2k có : (2k - 1)/1 + 1 số
=> Từ 1 - > 2k có 2k số => có k cặp (1 + 2k)
=> [ (1 + 2k) + (2 + 2k - 1) + ....] + (2k + 1) = k(2k + 1) + (2k + 1)
= (2k + 1)(k + 1)
= [2.(k + 1)(2k + 1)]/2
= [(2k + 2)(2k + 1)]/2 Thay x = 2k + 1 vào thì ta đựơc
= x(x + 1)/2
Với x chẵn thì đặt x = 2k (k là số tự nhiên)
=> 1 + 2+ 3 +... + x = 1 + 2 + 3 + ... + 2k
= (1 + 2k) + (2 + 2k - 1) + ...
= (1 + 2k).k (Từ 1 -> 2k có 2k số nên có k cặp)
= [2k(2k + 1)]/2
= x(x + 1)/2
Như vậy ta đã chứng minh được công thức trên
Áp dụng vào ta được:
x(x + 1)/2 = aaa
Do 111 ≤ aaa ≤ 999
=> 111 ≤ x(x + 1)/2 ≤ 999
<=> 222 ≤ x(x + 1) ≤ 1998
<=> 888 ≤ 4x(x + 1) ≤ 7992
<=> 888 ≤ 4x² + 4x ≤ 7992
<=> 888 + 1 ≤ 4x² + 4x + 1 ≤ 7992 + 1
<=> 889 ≤ (2x + 1)² ≤ 7993
=> 30 ≤ (2x + 1) ≤ 89 (Do x là số tự nhiên)
<=> 30 - 1 ≤ 2x ≤ 89 - 1
<=> 29 ≤ 2x ≤ 88
=> 15 ≤ x ≤ 44 (Do x là số tự nhiên)
=> x ∈ {15; 16 ; 17; ... ; 44 }
Thử các giá trị của x từ 15 - > 44 ta được chí có x = 36 thì đuợc kết quả là 666.
Vậy x = 36 .
Nguyễn Khánh Ngân
Theo cách tính tổng của dãy số cách đều ta có: ( 1 + a ) x a : 2 = aaa ((1 + n ) là tổng một cặp; n cũng lả số các số hạng của dãy số )
Hay ( 1 + n ) x n = aaa x 2
\(\Rightarrow\)( 1 + a) x a = 111 x 2 x a
\(\Rightarrow\)( 1 + a ) x a = 37 x 3 x 2 x a
Vì 37 không thể phân tích thành tích của 2 số hạng nào khác nhỏ hơn 37 nên ( 1 + n ) hoặc n chia hết cho 37. Mặt khác a lớn nhất = 9
\(\Rightarrow\)111 x 2 x a lớn nhất = 1998
Từ đó \(\Rightarrow\)( 1 + a ) < 50 ( vì 50 x 49 > 1998 ). Vậy hoặc ( 1 + n ) = 37 hoặc n = 37
Nếu 1 trong 2 số = 37 thì số còn lại phải chia hết cho 3 nên chỉ có trường hợp ( 1 + a ) = 37 \(\Rightarrow\)a = 37 - 1 = 36