Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3a=5b=>b=\frac{3a}{5}\)
\(5a=6c=>c=\frac{5a}{6}\)
\(2a-3b+c=-74=2a-\frac{9a}{5}+\frac{5a}{6}=-74\)
\(\frac{2.30a-9.6a+5.5a}{5.6}=\frac{61a}{30}=-74=>a=-\frac{30.74}{61}=-\frac{2220}{61}=>\)\(b=\frac{-3.2220}{5.61}=\frac{-1332}{61}\) \(c=\frac{-1110}{61}\)
\(a=\frac{5}{3}b\); \(c=\frac{5}{6}b\)
\(\Rightarrow3.\frac{5}{6}b-2.\frac{5}{3}b=10\)
\(\Leftrightarrow\frac{-5}{6}b=10\)
\(\Leftrightarrow b=-12\)
b, Tương tự
Bài làm:
a) \(3a=5b=6c\)
\(\Leftrightarrow\frac{a}{10}=\frac{b}{6}=\frac{c}{5}\)
Áp dụng t/c của dãy tỉ số bằng nhau:
\(\frac{a}{10}=\frac{b}{6}=\frac{c}{5}=\frac{3c-2a}{15-20}=\frac{10}{-5}=-2\)
\(\Rightarrow\hept{\begin{cases}a=-20\\b=-12\\c=-10\end{cases}}\)
b) Ta có: \(3a=4b\Leftrightarrow\frac{a}{4}=\frac{b}{3}\Leftrightarrow\frac{a}{20}=\frac{b}{15}\left(1\right)\)
và \(6b=5c\Leftrightarrow\frac{b}{5}=\frac{c}{6}\Leftrightarrow\frac{b}{15}=\frac{c}{18}\left(2\right)\)
Từ (1) và (2) => \(\frac{a}{20}=\frac{b}{15}=\frac{c}{18}\)
Áp dụng t/c của dãy tỉ số bằng nhau:
\(\frac{a}{20}=\frac{b}{15}=\frac{c}{18}=\frac{2c-3b+a}{36-45+20}=\frac{-22}{11}=-2\)
\(\Rightarrow\hept{\begin{cases}a=-40\\b=-30\\c=-36\end{cases}}\)
Ta có:\(2a=3b=>\frac{a}{3}=\frac{b}{2}\)
\(5b=2c=>\frac{b}{2}=\frac{c}{5}\)
=>\(\frac{a}{3}=\frac{b}{2}=\frac{c}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{2}=\frac{c}{5}=\frac{3a}{9}=\frac{7b}{14}=\frac{5c}{25}=\frac{3a+5c-7b}{9+25-14}=\frac{30}{20}=\frac{3}{2}\)
=>\(a=\frac{3}{2}.3=\frac{9}{2},b=\frac{3}{2}.2=3,c=\frac{3}{2}.5=\frac{15}{2}\)
Ta có 2a =3b=6c
Suy ra a/1/2=b/1/3=c/1/6
Áp dụng tính chất dãy tỉ số bằng nhau ta có
a/1/2=b/1/3=c/1/6=( a+b-c)/(1/2+1/3-1/6)=38/(2/3)=57
suy ra a=57/2
b=57/3
c=57/6
\(2a=3b=6c\Rightarrow\frac{2a}{6}=\frac{3b}{6}=\frac{6c}{6}=\frac{a}{3}=\frac{b}{2}=\frac{c}{1}=\frac{a+b-c}{3+2-1}=\frac{38}{4}=9,5\Rightarrow\hept{\begin{cases}a=9,5.3=28,5\\b=9,5.2=19\\c=9,5\end{cases}}\)
1. 2a = 3b ; 5b =7c
Từ giả thiết 2a = 3b => \(\frac{a}{3}=\frac{b}{2}\)=>\(\frac{a}{3}.\frac{1}{7}=\frac{b}{2}.\frac{1}{7}=>\frac{a}{21}=\frac{b}{14}\)
5b = 7c => \(\frac{b}{7}=\frac{c}{5}=>\frac{b}{7}.\frac{1}{2}=\frac{c}{5}.\frac{1}{2}=>\frac{b}{14}=\frac{c}{10}\)
Do đó: \(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\) và 3a + 5c -7b = 30
Ta đặt \(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}=k\)
Suy ra a= 21k, b= 14k, c= 10k
Theo giả thiết: 3a + 5c - 7b = 30 =>3.21k + 5.10k - 7.14k = 30
=>63k + 50k - 98k= 30 => 15k = 30=> k= 2
Vậy a = 21.2=42
b = 14.2= 28
c = 10.2=20.
2. Bạn giải như bài trên nha!
Ta có: 2a = 3b => \(\dfrac{a}{3}=\dfrac{b}{2}\)
Ta có: 5b = 6c => \(\dfrac{b}{6}=\dfrac{c}{5}\)
Ta có: \(\dfrac{a}{3}=\dfrac{b}{2};\dfrac{b}{6}=\dfrac{c}{5}\Rightarrow\dfrac{a}{9}=\dfrac{b}{6}=\dfrac{c}{5}\)
và a + 3b - 2c = -5
Áp dụng t/c dãy tỉ số = nhau; ta có:
\(\dfrac{a}{9}=\dfrac{b}{6}=\dfrac{c}{5}=\dfrac{a+3b-2c}{9+3.6-2.5}=\dfrac{-5}{17}\)
\(\dfrac{a}{9}=\dfrac{-5}{17}\) => a = -45/17
\(\dfrac{b}{6}=\dfrac{-5}{17}\) => b = -30/17
\(\dfrac{c}{5}=\dfrac{-5}{17}\) => c = -25/17
Vậy... a = -45/17
b = -30/17
c = -25/17.
Ta có:
+) \(2a=3b\Rightarrow\dfrac{a}{3}=\dfrac{b}{2}\Rightarrow\dfrac{a}{18}=\dfrac{b}{12}\)
+) \(5b=6c\Rightarrow\dfrac{b}{6}=\dfrac{c}{5}\Rightarrow\dfrac{b}{12}=\dfrac{c}{10}\)
=> \(\dfrac{a}{18}=\dfrac{b}{12}=\dfrac{c}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{18}=\dfrac{b}{12}=\dfrac{c}{10}\Rightarrow\dfrac{a}{18}+\dfrac{3b}{36}-\dfrac{2c}{20}=\dfrac{a+3b-2c}{18+36-20}=-\dfrac{5}{34}\)
Suy ra:
\(\dfrac{a}{18}=-\dfrac{5}{34}\Rightarrow a=-\dfrac{45}{17}\)
\(\dfrac{b}{12}=-\dfrac{5}{34}\Rightarrow b=-\dfrac{30}{7}\)
\(\dfrac{c}{10}=-\dfrac{5}{34}\Rightarrow c=-\dfrac{25}{17}\)