Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt : \(\frac{a}{3}=\frac{b}{4}=k\)=> \(\hept{\begin{cases}a=3k\\b=4k\end{cases}}\) (*)
Khi đó, ta có: ab = 48
=> \(3k.4k=48\)
=> \(12k^2=48\)
=> \(k^2=48:12\)
=> \(k^2=4\)
=> \(k=\pm2\)
Thay \(k=\pm2\) vào (*), ta được :
\(\hept{\begin{cases}a=3.\left(\pm2\right)=\pm6\\b=4.\left(\pm2\right)=\pm8\end{cases}}\)
Vậy ...
Đặt \(\frac{a}{3}=k\rightarrow a=3k\)
\(\frac{b}{4}=k\rightarrow b=4k\)
Ta có: a.b = 48
<=> 3k.4k = 48
<=> 12k^2 = 48
<=> k^2 = 4
<=> k = \(\pm2\)
Với k = 2 -> a = 3 . 2 = 6; b = 4 . 2 = 8
Với k = -2 -> a = 3 . (-2) = -6; b = 4 . (-2) = -8
Vậy a = 6 hoặc a = -6
b = 8 hoặc b = -8
\(\frac{ab+ac}{2}=\frac{bc+ab}{3}=\frac{ca+bc}{4}\)
( ta lần lược lấy - (1) + (2) + (3) = (1) - (2) + (3) = (1) + (2) - (3) được)
\(=\frac{2bc}{5}=\frac{2ca}{3}=\frac{2ab}{1}\)
Ta thấy rằng a,b,c không thể = 0 vì như vậy thì a + b + c \(\ne69\)
\(\Rightarrow\hept{\begin{cases}a=\frac{c}{5}\\b=\frac{c}{3}\end{cases}}\)
Thế vào: a + b + c = 69
\(\Leftrightarrow\frac{c}{5}+\frac{c}{3}+c=69\)
\(\Rightarrow c=45\)
\(\Rightarrow\hept{\begin{cases}a=9\\b=15\end{cases}}\)
Đặt: \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=k\)
Suy ra: a=3k, b=4k, c=5k
a.b.c=480 suy ra 3k.4k.5k=480
suy ra: 60.k^3=480
k^3=480:60=8
Vậy k=2
Thay vào ta có:a=6, b=8,c=10
Đặt \(\frac{a}{b}=\frac{c}{d}=k\), suy ra \(a=bk;c=dk\)
\(VT=\frac{2b^2k^2-3b^2k+3b^2}{2b^2+3b^2k}=\frac{b^2\left(2k^2-3k+3\right)}{b^2\left(2+3k\right)}=\frac{2k^2-3k+3}{3k+2}\left(1\right)\)
\(VP=\frac{2d^2k^2-3d^2k+3d^2}{2d^2+3d^2k}=\frac{d^2\left(2k^2-3k+3\right)}{d^2\left(2+3k\right)}=\frac{2k^2-3k+3}{3k+2}\left(2\right)\)
Từ (1) và (2) suy ra ĐPcm
Đặt\(\frac{a}{3}=\frac{b}{12}=\frac{c}{5}\)= k => a= 3k; b= 12k;c=5k
a.b.c = 22,5 => 3k.12k.5k = 22,5 = 180k3 = 22,5 => k3 = 0,125 => k = 0,5
Do đó:\(\frac{a}{3}=0,5=>a=1,5\)
\(\frac{b}{12}=0,5=>b=6\)
\(\frac{c}{5}=0,5=>c=2,5\)
Vậy...
Đặt \(\frac{a}{3}=\frac{b}{12}=\frac{c}{5}\)= k => a = 3k ; b = 12k ; c = 5k
a.b.c = 22,5 => 3k.12k.5k = 22,5 => 180k3 = 22,5 => k3 = 0,125 => k= 0,5
Do đó : \(\frac{a}{3}=0,5\Rightarrow a=1,5\)
\(\frac{b}{12}=0,5\Rightarrow b=6\)
\(\frac{c}{5}=0,5\Rightarrow c=2,5\)
Vậy ...
a) Ta có: \(\frac{a}{3}=\frac{b}{4}.\)
=> \(\frac{a}{3}=\frac{b}{4}\) và \(a.b=48.\)
Đặt \(\frac{a}{3}=\frac{b}{4}=k\Rightarrow\left\{{}\begin{matrix}a=3k\\b=4k\end{matrix}\right.\)
Có: \(a.b=48\)
=> \(3k.4k=48\)
=> \(12k^2=48\)
=> \(k^2=48:12\)
=> \(k^2=4\)
=> \(k=\pm2.\)
TH1: \(k=2.\)
\(\Rightarrow\left\{{}\begin{matrix}a=2.3=6\\b=2.4=8\end{matrix}\right.\)
TH2: \(k=-2.\)
\(\Rightarrow\left\{{}\begin{matrix}a=\left(-2\right).3=-6\\b=\left(-2\right).4=-8\end{matrix}\right.\)
Vậy \(\left(a;b\right)=\left(6;8\right),\left(-6;-8\right).\)
Chúc bạn học tốt!