Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm giá trị nhỏ nhất của biểu thức A = /x+1/ + /x-2017/ với x là số nguyên
Dễ thấy y + 2018 > y + 2017 nên 2x > 2z
\(\Rightarrow2^x⋮2^z\)
hay y + 2018 \(⋮\) y + 2017
=> y + 2017 + 1 \(⋮\) y + 2017
Vì y + 2017 \(⋮\) y + 2017 nên 1 \(⋮\) y + 2017
\(y+2017\in\left\{\pm1\right\}\)
+) \(y+2017=1\Rightarrow y=-2016\)
Lúc đó x = 1; z = 0 (tm)
+) \(y+2017=-1\Rightarrow y=-2018\)
Lúc đó \(2^z=-1\)(vô lí)
Vậy x = 1;y = -2016;z=0
1) ADTCDTSBN
có: \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-7}=\frac{x-y-z}{3-5+7}=\frac{20}{5}=4.\)
=> ...
a) 2y+1.3x=12y=3y.22y
<=> 2y+1.3x=3y.22y <=> 3x-y=22y-y-1 <=> 3x-y=2y-1
Nếu x-y và y-1 khác 0 thì 2 vế 1 số là lẻ, 1 số là chẵn => ko có giá trị nào.
=> x-y=y-1=0 => x=y=1
Ta có:\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}=\dfrac{y+z+1+x+z+2+x+y-3}{x+y+z}=\dfrac{2\left(x+y+x\right)}{x+y+z}=2\)(theo tính chất của DTSBN)
Suy ra:\(\dfrac{1}{x+y+z}=2\)=>x+y+z=\(\dfrac{1}{2}\)
=>y+z=\(\dfrac{1}{2}\)-x
Tương tự, ta có được:
x+z=\(\dfrac{1}{2}-y\)
x+y=\(\dfrac{1}{2}-z\)
Thay các kết quả vừa tìm được, ta có:
\(\dfrac{0,5-x+1}{x}=\dfrac{0,5-y+2}{y}\dfrac{0,5-z-3}{z}=2\)=>\(\dfrac{1,5-x}{x}=\dfrac{2,5-y}{y}=\dfrac{-2,5-z}{z}=2\)
=>x=\(\dfrac{1}{2},y=\dfrac{5}{6},z=\dfrac{-5}{6}\)
Thay x=\(\dfrac{1}{2},y=\dfrac{5}{6},z=\dfrac{-5}{6}\)vào biểu thức A, ta có:
A=2018.\(\dfrac{1}{2}\)+\(\left(\dfrac{5}{6}\right)^{2017}\)+\(\left(\dfrac{-5}{6}\right)^{2017}\)
=>A=1009+\(\left[\left(\dfrac{5}{6}\right)^{2017}+\left(\dfrac{-5}{6}\right)^{2017}\right]\)
=>A=1009+0
=>A=1009
Vậy giá trị của biểu thức A là 1009
ta có x-y cùng tính chẵn lẻ với x-y
y-z cùng tính chẵn lẻ với y-z
z-x cùng tính chẵn lẻ với z-x
=> |x-y| +|y-z|+|z-x| cùng tính chẵn lẻ với (x-y)+(y-z)+(z-x) =0 là một số chẵn
=> |x-y| +|y-z|+|z-x| là một số chẵn
mà 2017^2+2018^2 là một số lẻ (tận cùng là 3)
vậy không có giá trị nào của a , b, c thỏa mãn đề bài