Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì số nguyên tố nhỏ nhất là 2 nên \(q\ge2\Leftrightarrow5q^2\ge20\)
Lại có: \(p^2-5q^2=4\Leftrightarrow p^2=4+5q^2\ge4+20=24\)
\(\Rightarrow p\ge4,9\)
Mà p là số nguyên tố \(\Rightarrow p\ne3\Rightarrow p⋮̸3\)
Ta có tình chất sau: Một số không chia hết cho 3 khi bình phương lên luôn chia 3 dư 1
Nên \(p^2:3\)(dư 1)
Ta lại có 4 :3 dư 1
\(\Rightarrow5q^2⋮3\Rightarrow q⋮3\)
Mà q là số nguyên tố nên q = 3.
Thay q vào phương trình ban đầu ta được p = 7 (thỏa mãn p là số nguyên tố)
a) \(p^2q+p⋮\left(p^2+q\right)\Rightarrow q\left(p^2+q\right)-\left(p^2q+q\right)=q^2-p\left(p^2+q\right)\)
\(pq^2+q⋮\left(q^2-p\right)\Rightarrow\left(pq^2+q\right)-p\left(q^2-p\right)=p^2+q⋮q^2-p\)
\(q^2-p=-\left(p^2+q\right)\Leftrightarrow q^2+q+p^2-p=0\left(VN\right)\)
\(q^2-p=p^2+q\Leftrightarrow\left(q+p\right)\left(q-p-1\right)=0\Leftrightarrow q-p-1=0\Leftrightarrow q=p+1\)
Mà p,q là 2 số nguyên tố nên p=2, q=3
Đặt \(a=p^q+7q^p\)
Nếu p; q đều bằng 2 \(\Rightarrow a=2^2+7.2^2\) là hợp số (ktm)
Nếu p; q cùng lớn hơn 2 \(\Rightarrow p^q\) và \(q^p\) đều lẻ
\(\Rightarrow a=p^q+7q^p\) là số chẵn lớn hơn 2 \(\Rightarrow\) là hợp số (ktm)
\(\Rightarrow\) Có đúng 1 số trong p; q phải bằng 2, số còn lại là SNT lẻ
TH1: \(p=2\Rightarrow a=2^q+7.q^2\)
- Nếu \(q=3\Rightarrow a=2^3+7.3^2=71\) là SNT (thỏa mãn)
- Nếu \(q>3\Rightarrow q^2\equiv1\left(mod3\right)\Rightarrow7q^2\equiv1\left(mod3\right)\)
\(2^q=2^{2k+1}=2.4^k\equiv2\left(mod3\right)\)
\(\Rightarrow a=2^q+7.q^2\equiv2+1\left(mod3\right)\Rightarrow a⋮3\) là hợp số (ktm)
TH2: \(q=2\Rightarrow a=p^2+7.2^p\)
- Nếu \(p=3\Rightarrow a=3^2+7.2^3=65\) ko phải SNT (ktm)
- Nếu \(p>3\Rightarrow p^2\equiv1\left(mod3\right)\)
\(7.2^p=7.2^{2k+1}=14.4^k\equiv2\left(mod3\right)\)
\(\Rightarrow p^2+7.2^p⋮3\) là hợp số (ktm)
Vậy \(\left(p;q\right)=\left(2;3\right)\) là cặp SNT duy nhất thỏa mãn yêu cầu
Đây là bài toán rất khó về đồng dư thức, em cám ơn thầy Lâm đã giải rất cẩn thận ạ!
Ta có:
\(p^2-2q^2=1\Rightarrow p^2=2q^2\)mà p lẻ. Đặt p = 2k + 1 (k là số tự nhiên)
Ta có:
\(\left(2k+1\right)^2=2q^2+1\Rightarrow q^2+1=2k\left(k+1\right)\Rightarrow q=2\)(vì q là số nguyên tố) tìm được p = 3
Vậy: \(\left(p;q\right)\in\left\{3;2\right\}\)
Do vai trò của x,y bình đẳng như nhau,giả sử \(x\ge y\),khi đó:
\(\frac{x+y}{x^2+y^2}=\frac{7}{25}\)
\(\Rightarrow7\left(x^2+y^2\right)=25\left(x+y\right)\)
\(\Rightarrow7x^2+7y^2=25x+25y\)
\(\Rightarrow7x^2-25x=25y-7y^2\)
\(\Rightarrow x\left(7x-25\right)=y\left(25-7y\right)\)
\(\Rightarrow7x-25\)và \(25-7y\)cùng dấu vì \(x,y\inℕ\)
Nếu \(\hept{\begin{cases}7x+25< 0\\25-7y< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x< 4\\y< 4\end{cases}}\)(trái với giả sử)
Nếu \(\hept{\begin{cases}7x-25\ge0\\25-7y\ge0\end{cases}}\)
\(\Rightarrow x\ge4,y< 4\)
Thử y là các số tự nhiên từ 0 đến 3 ta được \(x=4,y=3\)
Vậy các cặp số (x,y) cần tìm là:\(\left(3;4\right)\)và các hoán vị của chúng
Có p là số nguyên tố,p lẻ
+)Xét p=3 suy ra 134=2q(17q+24) suy ra q(17q+24)=67
Mà q lớn hơn hoặc = 2 nên vô lí
+)Xét p>3.p nguyên tố nên p ko chia hết cho 3
th1: p chia 3 dư 1.Đặt p=3k+1 nên VT chia hết cho 3 nên VP chia hết cho 3, Từ đó suy ra q chia hết cho 3,mà q nguyên tố nên q=3.Thay vào tìm ra p
th2 : p chia 3 dư 2. Đặt p=3k+2 nên VT chia 3 dư 2. VT=VP nên 2q(17q+24) chia 3 dư 2
Từ đó có q(17q+24) chia 3 dư 1 nên 17q^2 +24q chia 3 dư 1
Mà 24q chia hết cho 3 nên 17q^2 chia 3 dư 1(loại)
trường hợp 2 hình như ko đúng