K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2020

Có p là số nguyên tố,p lẻ 
+)Xét p=3 suy ra 134=2q(17q+24) suy ra q(17q+24)=67
Mà q lớn hơn hoặc = 2 nên vô lí
+)Xét p>3.p nguyên tố nên p ko chia hết cho 3
th1: p chia 3 dư 1.Đặt p=3k+1 nên VT chia hết cho 3 nên VP chia hết cho 3, Từ đó suy ra q chia hết cho 3,mà q nguyên tố nên q=3.Thay vào tìm ra p

th2 : p chia 3 dư 2. Đặt p=3k+2 nên VT chia 3 dư 2. VT=VP nên 2q(17q+24) chia 3 dư 2 

Từ đó có q(17q+24) chia 3 dư 1 nên 17q^2 +24q chia 3 dư 1

Mà 24q chia hết cho 3 nên 17q^2 chia 3 dư 1(loại)

8 tháng 1 2020

trường hợp 2 hình như ko đúng 

29 tháng 5 2018

Vì số nguyên tố nhỏ nhất là 2 nên \(q\ge2\Leftrightarrow5q^2\ge20\)

Lại có: \(p^2-5q^2=4\Leftrightarrow p^2=4+5q^2\ge4+20=24\)

\(\Rightarrow p\ge4,9\)

Mà p là số nguyên tố \(\Rightarrow p\ne3\Rightarrow p⋮̸3\)

Ta có tình chất sau: Một số không chia hết cho 3 khi bình phương lên luôn chia 3 dư 1

Nên \(p^2:3\)(dư 1)

Ta lại có 4 :3 dư 1

\(\Rightarrow5q^2⋮3\Rightarrow q⋮3\)

Mà q là số nguyên tố nên q = 3.

Thay q vào phương trình ban đầu ta được p = 7 (thỏa mãn p là số nguyên tố)

chịu,mới lớp 5 thôi

6 tháng 12 2020

a) \(p^2q+p⋮\left(p^2+q\right)\Rightarrow q\left(p^2+q\right)-\left(p^2q+q\right)=q^2-p\left(p^2+q\right)\)

\(pq^2+q⋮\left(q^2-p\right)\Rightarrow\left(pq^2+q\right)-p\left(q^2-p\right)=p^2+q⋮q^2-p\)

\(q^2-p=-\left(p^2+q\right)\Leftrightarrow q^2+q+p^2-p=0\left(VN\right)\)

\(q^2-p=p^2+q\Leftrightarrow\left(q+p\right)\left(q-p-1\right)=0\Leftrightarrow q-p-1=0\Leftrightarrow q=p+1\)

Mà p,q là 2 số nguyên tố nên p=2, q=3 

NV
6 tháng 4 2022

Đặt \(a=p^q+7q^p\)

Nếu p; q đều bằng 2 \(\Rightarrow a=2^2+7.2^2\) là hợp số (ktm)

Nếu p; q cùng lớn hơn 2 \(\Rightarrow p^q\) và \(q^p\) đều lẻ

\(\Rightarrow a=p^q+7q^p\) là số chẵn lớn hơn 2 \(\Rightarrow\) là hợp số (ktm)

\(\Rightarrow\) Có đúng 1 số trong p; q phải bằng 2, số còn lại là SNT lẻ

TH1: \(p=2\Rightarrow a=2^q+7.q^2\)

- Nếu \(q=3\Rightarrow a=2^3+7.3^2=71\) là SNT (thỏa mãn)

- Nếu \(q>3\Rightarrow q^2\equiv1\left(mod3\right)\Rightarrow7q^2\equiv1\left(mod3\right)\)

\(2^q=2^{2k+1}=2.4^k\equiv2\left(mod3\right)\)

\(\Rightarrow a=2^q+7.q^2\equiv2+1\left(mod3\right)\Rightarrow a⋮3\) là hợp số (ktm)

TH2: \(q=2\Rightarrow a=p^2+7.2^p\)

- Nếu \(p=3\Rightarrow a=3^2+7.2^3=65\) ko phải SNT (ktm)

- Nếu \(p>3\Rightarrow p^2\equiv1\left(mod3\right)\)

\(7.2^p=7.2^{2k+1}=14.4^k\equiv2\left(mod3\right)\)

\(\Rightarrow p^2+7.2^p⋮3\) là hợp số (ktm)

Vậy \(\left(p;q\right)=\left(2;3\right)\) là cặp SNT duy nhất thỏa mãn yêu cầu

6 tháng 4 2022

Đây là bài toán rất khó về đồng dư thức, em cám ơn thầy Lâm đã giải rất cẩn thận ạ!

21 tháng 6 2015

làm rồi thì làm đi Đinh Tuấn Việt

18 tháng 12 2017

Ta có:

\(p^2-2q^2=1\Rightarrow p^2=2q^2\)mà p lẻ. Đặt p = 2k + 1 (k là số tự nhiên)

Ta có: 

\(\left(2k+1\right)^2=2q^2+1\Rightarrow q^2+1=2k\left(k+1\right)\Rightarrow q=2\)(vì q là số nguyên tố) tìm được p = 3

Vậy: \(\left(p;q\right)\in\left\{3;2\right\}\)

14 tháng 1 2019

Do vai trò của x,y  bình đẳng như nhau,giả sử \(x\ge y\),khi đó:

\(\frac{x+y}{x^2+y^2}=\frac{7}{25}\)

\(\Rightarrow7\left(x^2+y^2\right)=25\left(x+y\right)\)

\(\Rightarrow7x^2+7y^2=25x+25y\)

\(\Rightarrow7x^2-25x=25y-7y^2\)

\(\Rightarrow x\left(7x-25\right)=y\left(25-7y\right)\)

\(\Rightarrow7x-25\)và \(25-7y\)cùng dấu vì \(x,y\inℕ\)

Nếu \(\hept{\begin{cases}7x+25< 0\\25-7y< 0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x< 4\\y< 4\end{cases}}\)(trái với giả sử)

Nếu \(\hept{\begin{cases}7x-25\ge0\\25-7y\ge0\end{cases}}\)

\(\Rightarrow x\ge4,y< 4\)

Thử y là các số tự nhiên từ 0 đến 3 ta được \(x=4,y=3\)

Vậy các cặp số (x,y) cần tìm là:\(\left(3;4\right)\)và các hoán vị của chúng