K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2023

Xét \(x=0\Rightarrow y=0\)\(x=1\Rightarrow y^3=2\), vô lí. \(x=2\Rightarrow y=2\).

Với \(x\ge3\), ta viết lại pt đã cho như sau:

\(y^3=3^x-1\)

Ta thấy \(y\equiv2\left[3\right]\) \(\Rightarrow y=3z-1\left(z\inℕ^∗\right)\)

\(\Rightarrow\left(3z-1\right)^3=3^x-1\) 

\(\Leftrightarrow27z^3-27z^2+9z-1=3^x-1\)

\(\Leftrightarrow27z^3-27z^2+9z=3^x\)

\(\Leftrightarrow9z^3-9z^2+z=3^{x-2}\) 

\(\Leftrightarrow z\left(9z^2-9z+1\right)=3^{x-2}\)

Do \(9z^2-9z+1⋮̸3\)  nên \(\left\{{}\begin{matrix}z=3^{x-2}\\9z^2-9z+1=1\end{matrix}\right.\), vô lí do \(z\inℕ^∗\)

Vậy với \(x\ge3\) thì pt đã cho không có nghiệm nguyên.

Do đó pt đã cho có cặp nghiệm nguyên \(\left(x,y\right)\in\left\{\left(0;0\right);\left(2;2\right)\right\}\)

 

9 tháng 8 2023

- Nếu x < 0 => y không nguyên

- Nếu x = 0 => y = 0

- Nếu x = 1 => y không nguyên 

- Nếu x = 2 => y = 2 

- Nếu x > 2 pt => 3= y3 + 1 ( Vì x > 2 => y3 > 9 ) 

Ta suy ra �3+1⋮9⇒�3÷9dư 1 

⇒�=9�+2hoặc  �=9�+5hoặc  �=9�+8( k là số nguyên dương ) (1) 

Mặt khác, ta cũng có �3+1⋮3

⇒�=3�+2( m nguyên dương ) (2)

Từ (1) và (2) => vô nghiệm ( Vì từ (2) ⇒�=9�+6không thỏa (1) )

Vậy phương trình có 2 cặp nghiệm nguyên không âm là ( 0;0 ) và ( 2;2 )

25 tháng 4 2015

Tu de bai suy ra 2y+2x=xy<=>...<=>y(2-x)= -2x<=>y=2x/(x-2)<=>y=(2x-4+4)/(x-2)<=>y=2+4/(x-2)

vi x la so nguyen Dưỡng nen x-2 la so nguyen  duong va la ước cua 4 => x-2 =1 hoặc x-2= 4 => x=3 hoac x=6 

Voi x=3 => y= 6

voi x=6=> y=3

vay cac cap so nguyen duong (x;y) can tim la (3;6); (6;3)

26 tháng 4 2015

.....

Sau khi chi ra x-2 la uoc nguyen duong cua 4

 Co 3  Truong hop

x-2 =1; x-2=2;x-2=4

Tu do tinh duoc x=3;x=4;x=6. Suy ra cac gia tri tuong ung cua y

co 3 cap so nguyen duong x, y can Tim:(3;6);(4 ;4);(6;3)

9 tháng 8 2023

Đáp án:

 

Giải thích các bước giải:

Ta có:

2�2+3�+2

=2(�2+32�+1)

=2(�2+2.�.34+916+716)

=2[(�+34)2+716]

=2(�+34)2+78

Nhận xét:

2(�+34)2≥0 

⇒2(�+34)2+78>0 

Mà �3+2�2+3�+2=�3

Nên: �3<�3

Giả sử: �3<(�+2)3

⇔�3+2�2+3�+2<�3+6�2+12�+8

⇔-4�2-9�-6<0

⇔-(4�2+9�+6)<0

⇔4�2+9�+6>0

⇔4(�2+94�+8164)+1516>0

⇔4(�2+2.�.98+8164)+1516>0

⇔4(�+98)2+1516>0 (luôn đúng)

Vậy điều giả sử đúng hay �3<(�+2)3

Mà: �3<�3

Nên: �3<�3<(�+2)3

Mà �3 là lập phương của 1 số nguyên, giữa �3 và (�+2)3 chỉ có duy nhất 1 lập phương của số nguyên là (�+1)3

Nên: �3=(�+1)3

⇔�3+2�2+3�+2=�3+3�2+3�+1

⇔-�2+1=0

⇔1-�2=0

⇔(1-�)(1+�)=0

 [1−�=01+�=0

 [�=1�=−1

+)�=1 thì �3=1+2+3+2=8

<=> y=2`

+)�=-1 thì �3=-1+2-3+2=0

⇔�=0

Vậy 

9 tháng 8 2023

\(x^3+2x^2+3x+2=y^3\left(1\right)\)

- Nếu \(x=0\Leftrightarrow y^3=2\) không tồn tại y nguyên

- Nếu \(x\ne0\Rightarrow x^2\ge1\Rightarrow x^2-1\ge0\)

\(\left(1\right)\Leftrightarrow y^3=x^3+2x^2+3x+2\)

\(\Leftrightarrow y^3=x^3+3x^2+3x+1-\left(x^2-1\right)\)

\(\Leftrightarrow y^3=\left(x+1\right)^3-\left(x^2-1\right)\le\left(x+1\right)^3\left(2\right)\)

Ta lại có 

\(y^3=x^3+2x^2+3x+2=x^3+\left[2\left(x^2+\dfrac{3}{2}x+\dfrac{9}{16}\right)+2-\dfrac{9}{8}\right]\)

\(\Rightarrow y^3=x^3+\left[2\left(x+\dfrac{3}{4}\right)^2+\dfrac{7}{8}\right]\)

mà \(\left[2\left(x+\dfrac{3}{4}\right)^2+\dfrac{7}{8}\right]>0\)

\(\Rightarrow y^3< x^3\left(3\right)\)

\(\left(2\right),\left(3\right)\Rightarrow x^3< y^3\le\left(x+1\right)^3\)

\(\Rightarrow y^3=\left(x+1\right)^3\)

\(\left(2\right)\Rightarrow x^2-1=0\)

\(\Rightarrow x^2=1\)

\(\Rightarrow x=1;x=-1\)

Nếu \(x=-1\Rightarrow y=0\)

Nếu \(x=1\Rightarrow y=2\)

Vậy \(\left(x;y\right)\in\left\{\left(-1;0\right);\left(1;2\right)\right\}\) thỏa mãn đề bài