K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2018

bạn ơi bây giờ bạn đã có cách làm bài trên chưa?

Chỉ giúp mình với

Cảm ơn nhiều ạ

11 tháng 8 2016

1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)

\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)

=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)

=>\(x=3\cdot20=60\)

    \(y=3\cdot24=72\)

    \(z=3\cdot21=63\)

11 tháng 8 2016

3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)

=> \(x=1\cdot15=15\)

     \(y=1\cdot7=7\)

     \(z=1\cdot3=3\)

     \(t=1\cdot1=1\)

3 tháng 7 2017

\(\frac{x}{5}=\frac{y}{6}\Rightarrow\frac{x}{20}=\frac{y}{24}\)

\(\frac{y}{8}=\frac{z}{7}\Rightarrow\frac{y}{24}=\frac{z}{21}\)

\(\Rightarrow\frac{x}{20}=\frac{y}{24}=\frac{z}{21}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x-y+z}{20-24+21}=\frac{10}{17}\)

\(\Rightarrow x=\frac{200}{17};y=\frac{240}{17};z=\frac{210}{17}\)

5 tháng 3 2017

x=15;y=7;z=-3

mình không chắc lắm

5 tháng 3 2017

x=15;y=7;z=-3

nhớ k cho mình nhé

11 tháng 12 2016

a) + Nếu x + y + z = 0 thay vào đề bài ta được x = y = z = 0

+ Nếu x + y + z khác 0, áp dụng t/c của dãy tỉ số = nhau ta có:

x/z+y+1 = y/x+z+1 = z/x+y-2 = x+y+z/(z+y+1)+(x+z+1)+(x+y-2)

= x+y+z/2.(x+y+z) = 1/2 = x+y+z

=> 2x = z+y+1; 2y = x+z+1; 2z = x+y-2

=> 3x = x+y+z+1; 3y = x+y+z+1; 3z=x+y+z-2

=> 3x=1/2+1=3/2; 3y=1/2+1=3/2; 3z=1/2-2=-3/2

=> x=1/6 = y; z = -1/2

b) Theo bài ra ta có:

x + 1/x = k (k thuộc Z)

=> x^2+1/x = k

+ Với k = 0 => x = 0 (thỏa mãn)

+ Với k khác 0, do k nguyên nên x^2+1/x nguyên

=> x^2+1 chia hết cho x

=> 1 chia hết cho x

=> x thuộc {1 ; -1} (thỏa mãn)

Vậy số hữu tỉ x cần tìm là 0; 1; -1

11 tháng 12 2016

bạn ơi

câu a , x=1/2 , y=1/2 , z=-1/2

8 tháng 9 2016

\(\hept{\begin{cases}x\left(x+y+z\right)=-5\left(1\right)\\y\left(x+y+z\right)=9\left(2\right)\\z\left(x+y+z\right)=5\left(3\right)\end{cases}}\)

Cộng vế của ( 1 ) , ( 2 ) và ( 3 ) ta có

( x+y+z)\(^2\)=9

=>x +y + z = \(\ne\)9

Xét x + y +z = 9

=> \(\hept{\begin{cases}x.9=-5\\y.9=9\\z.9=5\end{cases}}\)

=>\(\hept{\begin{cases}x=\frac{-5}{9}\\y=1\\z=\frac{5}{9}\end{cases}}\)

Xét x + y + z = - 9

=> \(\hept{\begin{cases}x.\left(-9\right)=\left(-5\right)\\y.\left(-9\right)=9\\z.\left(-9\right)=5\end{cases}}\)

=>\(\hept{\begin{cases}x=\frac{5}{9}\\y=-1\\x=\frac{-5}{9}\end{cases}}\)