Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lười lắm hướng dẫn giải thôi
gọi 3 cạnh đó là x;y;z ( x;y;z >0 , cm)
vì ba đường cao của tam giác tỉ lệ nghịch với 5;7;8
=> x.5=y.7=z.8
=> \(\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{7}}=\frac{z}{\frac{1}{8}}\)
áp dụng t/c dãy tỉ số = nhau rồi cộng 3 cái lại xét x= ? ; y=? ; z=?
cho mình hỏi đề bài người ta nói mình tìm độ dài của 3 cạnh chứ ko phải tìm đường cao
tìm độ dài ba cạnh của một tam giác biết chu vi của nó bằng 740 cm và ba cạnh tỉ lệ nghịch với 4 5 6
lại bắt đầu nè tìm đường cao như bình thường rồi xét đường cao = cạnh => đó là các cạnh bla bla
Gọi chiều cao của tam giác lần lượt là a, b, c
các cạnh của tam giác lần lượt là x, y, z
Ta có: \(\frac{a}{3}=\frac{b}{5}=\frac{c}{6}\)
Đặt \(\frac{a}{3}=\frac{b}{5}=\frac{c}{6}=k\left(k\ne0\right)\)\(\Rightarrow a=3k\), \(b=5k\), \(c=6k\)
\(S_{\Delta}=\frac{1}{2}ax=\frac{1}{2}by=\frac{1}{2}cz\)\(\Rightarrow ax=by=cz\)
\(\Rightarrow3k.x=5k.y=6k.z\)\(\Rightarrow3x=5y=6z\)\(\Rightarrow\frac{3x}{30}=\frac{5y}{30}=\frac{6z}{30}=\frac{x}{10}=\frac{y}{6}=\frac{z}{5}=\frac{x+y+z}{10+6+5}=\frac{42}{21}=2\)
\(\Rightarrow x=2.10=20\), \(y=2.6=12\), \(z=2.5=10\)
Vậy độ dài 3 cạnh của tam giác lần lượt là 20 cm, 12 cm, 10 cm
Gọi độ dài 3 cạnh lần lượt là a,b,c
Theo đề, ta có: 5a=7b và 7b=8c
=>a/7=b/5 và b/8=c/7
=>a/56=b/40=c/35
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{a}{56}=\dfrac{b}{40}=\dfrac{c}{35}=\dfrac{a+b+c}{56+45+35}=\dfrac{31}{136}\)
=>a=217/17cm; b=155/17cm; c=1085/136cm
bài chu vi tam giác sai hay đúng z bạn 13cm hay bao nhiu ??