Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Sửa đề: \(A=\dfrac{3x-2}{x}-\dfrac{x-7}{x-5}-\dfrac{10}{x^2-5x}\)
\(=\dfrac{3x-2}{x}-\dfrac{x-7}{x-5}-\dfrac{10}{x\left(x-5\right)}\)
\(=\dfrac{\left(3x-2\right)\left(x-5\right)-x\left(x-7\right)-10}{x\left(x-5\right)}\)
\(=\dfrac{3x^2-15x-2x+10-x^2+7x-10}{x\left(x-5\right)}\)
\(=\dfrac{2x^2-10x}{x\left(x-5\right)}=\dfrac{2\left(x^2-5x\right)}{x\left(x-5\right)}=2\)
b: \(B=A\cdot\dfrac{x+1}{x-1}=\dfrac{2x+2}{x-1}\)(ĐKXĐ: x<>1)
Để B là số nguyên thì \(2x+2⋮x-1\)
=>\(2x-2+4⋮x-1\)
=>\(4⋮x-1\)
=>\(x-1\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{2;0;3;-1;5;-3\right\}\)
Kết hợp ĐKXĐ của cả A và B, ta được: \(x\in\left\{2;3;-1;-3\right\}\)
a) \(A=\frac{x}{x-5}-\frac{10x}{x^2-25}-\frac{5}{x+5}\left(x\ne\pm5\right)\)
\(=\frac{x}{x-5}-\frac{10x}{\left(x-5\right)\left(x+5\right)}-\frac{5}{x+5}\)
\(=\frac{x\left(x+5\right)}{x\left(x-5\right)}-\frac{10x}{\left(x-5\right)\left(x+5\right)}-\frac{5\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}\)
\(=\frac{x^2+5x}{\left(x-5\right)\left(x+5\right)}-\frac{10x}{\left(x-5\right)\left(x+5\right)}-\frac{5x-25}{\left(x-5\right)\left(x+5\right)}\)
\(=\frac{x^2+5x-10x-5x+25}{\left(x-5\right)\left(x+5\right)}\)
\(=\frac{x^2-10x+25}{\left(x-5\right)\left(x+5\right)}=\frac{\left(x-5\right)^2}{\left(x-5\right)\left(x+5\right)}=\frac{x-5}{x+5}\)
Vậy \(A=\frac{x-5}{x+5}\left(x\ne\pm5\right)\)
b) Ta có \(A=\frac{x-5}{x+5}\left(x\ne\pm5\right)\)
Để A nhận giá trị nguyên thì \(\frac{x-5}{x+5}\)phải nhận giá trị nguyên
=> \(x-5⋮\)x+5
Ta có x-5=(x+5)-10
Thấy x+5 \(⋮\)x+5 => 10 \(⋮\)x+5 thì \(\left(x+5\right)-10⋮x+5\)
mà x nguyên => x+5 nguyên
=> x+5\(\inƯ\left(10\right)=\left\{-10;-5;-2;-1;1;2;5;10\right\}\)
ta có bảng
x+5 | -10 | -5 | -2 | -1 | 1 | 2 | 5 | 10 |
x | -15 | -10 | -7 | -6 | -4 | -3 | 0 | 5 |
ĐCĐK | tm | tm | tm | tm | tm | tm | tm | ktm |
Vậy x={-15;-10;-7;-6;-4;-3;0} thì \(A=\frac{x-5}{x+5}\)nhận giá trị nguyên
\(a,\)Với \(x\ne-3,x\ne2\) ta có :
\(A=\dfrac{x+2}{x+3}-\dfrac{5}{x^2+x-6}-\dfrac{1}{x-2}\)
\(=\dfrac{x^2-4}{\left(x+3\right)\left(x-2\right)}-\dfrac{5}{\left(x+3\right)\left(x-2\right)}-\dfrac{x+3}{\left(x+3\right)\left(x-2\right)}\)
\(=\dfrac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}\)
\(=\dfrac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}\)
\(=\dfrac{\left(x-4\right)\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}\)
\(=\dfrac{x-4}{x-2}\)
\(b,\) \(A=-3\Leftrightarrow\dfrac{x-4}{x-2}=-3\)
\(\Leftrightarrow x-4=-3\left(x-2\right)\)
\(\Leftrightarrow x-4+3x-6=0\)
\(\Leftrightarrow4x=10\Rightarrow x=\dfrac{10}{4}=\dfrac{5}{2}\)
Biểu thức:
\(A=\frac{2020-x}{6-x}=\frac{2014+6-x}{6-x}=\frac{2014}{6-x}+1\)
Để A đạt giá trị lớn nhất:
thì \(\frac{2014}{6-x}\)đạt giá trị lớn nhất
<=> \(\frac{2014}{6-x}>0\) và \(6-x\)đạt giá trị bé nhất
=> \(6-x=1\Leftrightarrow x=5\)
Lúc đó A đạt giá trị lớn nhất là: \(maxA=\frac{2014}{6-5}+1=2015\)
Ta có: \(A=\frac{x+5}{x+3}=\frac{x+3+2}{x+3}=\frac{x+3}{x+3}+\frac{2}{x+3}=1+\frac{2}{x+3}=1\frac{2}{x+3}\)
=> Để biểu thức A đạt giá trị nguyên thì x+3 ϵ Ư(2)= { +1; +2}
* Nếu x+3= -1 => x= -1-3=-4;
* Nếu x+3= 1 => x= 1-3= -2;
* Nếu x+3= -2 => x= -2-3= -5;
* Nếu x+3= 2 => x= 2-3= -1
Vậy để biểu thức A đạt giá trị nguyên thì xϵ { -4; -2; -5; -1}
ĐKXĐ: \(x+3\ne0\\ x\ne-3\)
Để biểu thức A có giá trị nguyên thì \(\frac{x+5}{x+3}\)có giá trị nguyên.
\(=>x+3\inƯ\left(x+5\right)\)