Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+)Xét x<−1003x<−1003 suy ra
{x+1003<0⇒|x+1003|=−(x+1003)=−x−1003x−1004<0⇒|x−1004|=−(x−1004)=−x+1004{x+1003<0⇒|x+1003|=−(x+1003)=−x−1003x−1004<0⇒|x−1004|=−(x−1004)=−x+1004
Khi đó A=(−x+1004)−(−x−1003)=2007A=(−x+1004)−(−x−1003)=2007
+)Xét −1003≤x<1004−1003≤x<1004 suy ra
{x≥−1003⇒x+1003≥0⇒|x+1003|=x+1003x<1004⇒x−1004<0⇒|x−1004|=−(x−1004)=−x+1004{x≥−1003⇒x+1003≥0⇒|x+1003|=x+1003x<1004⇒x−1004<0⇒|x−1004|=−(x−1004)=−x+1004
Khi đó A=(−x+1004)−(x+1003)=1−2xA=(−x+1004)−(x+1003)=1−2x
+)Xét x≥1004x≥1004 suy ra
{x−1004≥0⇒|x−1004|=x−1004x+1003≥0⇒|x+1003|=x+1003{x−1004≥0⇒|x−1004|=x−1004x+1003≥0⇒|x+1003|=x+1003
Khi đó A=(x−1004)−(x+1003)=−2007A=(x−1004)−(x+1003)=−2007
Ta thấy: Với x<−1003x<−1003 thì A đạt giá trị lớn nhất là 2007
Vậy MaxA=2007MaxA=2007 khi x<−1003
~ Học tốt ~
Ta chứng minh: \(\left|a\right|-\left|b\right|\le\left|a-b\right|\)
\(\Leftrightarrow\left(\left|a\right|-\left|b\right|\right)^2\le\left(\left|a-b\right|\right)^2\)
\(\Leftrightarrow a^2-2\left|ab\right|+b^2\le a^2-2ab+b^2\)
\(\Leftrightarrow-\left|ab\right|\le-ab\)
\(\Leftrightarrow\left|ab\right|\ge ab\)(đúng)
Dấu "=" khi ab > 0
Áp dụng:
\(A=\left|x-1004\right|-\left|x+1003\right|\)
\(\le\left|x-1004-x-1003\right|=2007\)
Dấu "=" khi \(\orbr{\begin{cases}x\ge1004\\x\le-1003\end{cases}}\)
Bạn tham khảo tại đây nhé: Câu hỏi của Vuong Ngoc Nguyen Ha (Gau Truc)
Chúc bạn học tốt!
\(A=\left|x-1004\right|-\left|x+1003\right|\)
Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\)
\(\Leftrightarrow\left|x-1004\right|-\left|x+1003\right|\le\left|x-1004-x-1003\right|\)
\(\Leftrightarrow\left|x-1004\right|-\left|x+1003\right|\le2007\)
Vậy GTLN của A là 2007. Dấu "=" xảy ra khi \(x\ge1004\) hoặc \(x\le1003\).
\(A=\dfrac{3+2\left|x+2\right|}{1+\left|x+2\right|}\)
\(=\dfrac{2+2\left|x+2\right|+1}{1+\left|x+2\right|}\)
\(=\dfrac{2\left(1+\left|x+2\right|\right)+1}{1+\left|x+2\right|}\)
\(=\dfrac{2\left(1+\left|x+2\right|\right)}{1+\left|x+2\right|}+\dfrac{1}{1+\left|x+2\right|}\)
\(=2+\dfrac{1}{1+\left|x+2\right|}\)
Ta có \(\left|x+2\right|\ge0\)
\(\Leftrightarrow1+\left|x+2\right|\ge1\)
\(\Leftrightarrow\dfrac{1+\left|x+2\right|}{1+\left|x+2\right|}\ge\dfrac{1}{1+\left|x+2\right|}\)
\(\Leftrightarrow\dfrac{1}{1+\left|x+2\right|}\le1\)
\(\Leftrightarrow2+\dfrac{1}{1+\left|x+2\right|}\le1+2=3\)
\(\Rightarrow A\le3\)
Dấu \("="\) xảy ra khi \(x+2=0\) \(\Leftrightarrow x=-2\)
Vậy giá trị lớn nhất của biểu thức \(A\) là \(3\)
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)
Lời giải:
Đặt $|x+2|=a$ với $a\geq 0$. Khi đó:
$A=\frac{3+2a}{1+a}=\frac{2(1+a)+1}{1+a}=2+\frac{1}{1+a}$
Vì $a\geq 0$ với mọi $x$ nên $1+a\geq 1$
$\Rightarrow A=2+\frac{1}{1+a}\leq 2+\frac{1}{1}=3$
Vậy $A_{\max}=3$. Giá trị này đạt tại $a=0\Leftrightarrow |x+2|=0\Leftrightarrow x=-2$
Ta có: |a| - |b| \(\le\) |a - b|
Do đó: |x - 1004| - |x + 1003| \(\le\) |x - 1004 - x - 1003|
\(\le\) 2007
Vậy GTLN của A là 2007 khi x = -1013
\(A=\left|x-1004\right|-\left|x+1003\right|\)
Áp dụng bất đẳng thức \(\left|a\right|-\left|b\right|\le\left|a-b\right|\) ta có:
\(A=\left|x-1004\right|-\left|x+1003\right|\le\left|\left(x-1004\right)-\left(x+1003\right)\right|\)
\(\Rightarrow A\le\left|x-1004-x-1003\right|\)
\(\Rightarrow A\le\left|-2007\right|\)
\(\Rightarrow A\le2007.\)
Đẳng thức xảy ra khi \(x\le-1003.\)
Vậy \(MAX_A=2007\) khi \(x\le-1003.\)
Chúc bạn học tốt!
Cám ơn Vũ Minh Tuấn