K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2017

a) f(x) = 2x3 – 3x2 – 12x + 1 ⇒ f’(x) = 6x2 – 6x – 12

f’(x) = 0 ⇔ x ∈ {-1, 2}

So sánh các giá trị:

f(x) = -3; f(-1) = 8;

f(2) = -19, f(52)=−332f(52)=−332

Suy ra:

maxx∈[−2,52]f(x)=f(−1)=8minx∈[−2,52]f(x)=f(2)=−19maxx∈[−2,52]⁡f(x)=f(−1)=8minx∈[−2,52]⁡f(x)=f(2)=−19

b) f(x) = x2 lnx ⇒ f’(x)= 2xlnx + x > 0, ∀ x ∈ [1, e] nên f(x) đồng biến.

Do đó:

maxx∈[1,e]f(x)=f(e)=e2minx∈[1,e]f(x)=f(1)=0maxx∈[1,e]⁡f(x)=f(e)=e2minx∈[1,e]⁡f(x)=f(1)=0

c) f(x) = f(x) = xe-x ⇒ f’(x)= e-x – xe-x = (1 – x)e-x nên:

f’(x) = 0 ⇔ x = 1, f’(x) > 0, ∀x ∈ (0, 1) và f’(x) < 0, ∀x ∈ (1, +∞)

nên:

maxx∈[0,+∞)f(x)=f(1)=1emaxx∈[0,+∞)⁡f(x)=f(1)=1e

Ngoài ra f(x) = xe-x > 0, ∀ x ∈ (0, +∞) và f(0) = 0 suy ra

maxx∈[0,+∞)f(x)=f(0)=0maxx∈[0,+∞)⁡f(x)=f(0)=0

d) f(x) = 2sinx + sin2x ⇒ f’(x)= 2cosx + 2cos2x

f’(x) = 0 ⇔ cos 2x = -cosx ⇔ 2x = ± (π – x) + k2π

x∈{−π+k2π;π3+k2π3}x∈{−π+k2π;π3+k2π3}

Trong khoảng [0,3π2][0,3π2] , phương trình f’(x) = 0 chỉ có hai nghiệm là x1=π3;x2=πx1=π3;x2=π

So sánh bốn giá trị : f(0) = 0; f(π3)=3√32;f(π)=0;f(3π2)=−2f(π3)=332;f(π)=0;f(3π2)=−2

Suy ra:

maxx∈[0,3π2]f(x)=f(π3)=3√32minx∈[0,3π2]f(x)=f(3π2)=−2



23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

30 tháng 3 2022

Cho hàm số y=f(x)y=f(x) có đạo hàm và liên tục trên [0;π2][0;π2]thoả mãn f(x)=f′(x)−2cosxf(x)=f′(x)−2cosx. Biết f(π2)=1f(π2)=1, tính giá trị f(π3)f(π3)

A. √3+1/2         B. √3−1/2          C. 1−√3/2             D. 0

16 tháng 5 2016

1. \(f\left(x\right)=e^x\left(x^2-x-1\right)\) trên đoạn \(\left[0;3\right]\)

Ta có :

       \(f'\left(x\right)=e^x\left(x^2-x-1\right)+e^x\left(2x-1\right)=e^x\left(x^2+x-2\right)=0\)

       \(\Leftrightarrow\left[\begin{array}{nghiempt}x=-2\notin\left[0;3\right]\\x=1\in\left[0;3\right]\end{array}\right.\)

Mà : \(\begin{cases}f\left(0\right)=-1\\f\left(1\right)=-e\\f\left(3\right)=6e^3\end{cases}\)   \(\Leftrightarrow\begin{cases}Max_{x\in\left[0;3\right]}f\left(x\right)=6e^3;x=3\\Min_{x\in\left[0;3\right]}f\left(x\right)=-e;x=1\end{cases}\)

2. \(f\left(x\right)=x-e^{2x}\) trên đoạn \(\left[-1;0\right]\)

Ta có : 

             \(f'\left(x\right)=1-2e^{2x}=0\Leftrightarrow e^{2x}=\frac{1}{2}\Leftrightarrow e^{2x}=e^{\ln\frac{1}{2}}\)

                                              \(\Leftrightarrow2x=\ln\frac{1}{2}=-\ln2\Leftrightarrow x=\frac{-\ln2}{2}\in\left[-1;0\right]\)

Mà : 

\(\begin{cases}f\left(-1\right)=-1-\frac{1}{e^2}=-\frac{e^2+1}{e^2}\\f\left(-\frac{\ln2}{2}\right)=\frac{-\ln2}{2}-e^{-\ln2}=\frac{-\ln2}{2}-\frac{1}{2}=-\frac{1+\ln2}{2}\\f\left(0\right)=-1\end{cases}\)

\(\Leftrightarrow\begin{cases}Max_{x\in\left[-1;0\right]}f\left(x\right)=-\frac{1+\ln2}{2};x=-\frac{\ln2}{2}\\Min_{x\in\left[-1;0\right]}f\left(x\right)=-\frac{e^2+1}{e^2};x=-1\end{cases}\)

16 tháng 5 2016

1. \(f\left(x\right)=e^{x^3-3x+3}\) trên đoạn \(\left[0;2\right]\)

Ta có : \(f'\left(x\right)=\left(3x^2-3\right)e^{x^3-3x+3}=0\Leftrightarrow3x^2-3=0\)

                                                           \(\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\notin\left[0;2\right]\\x=1\in\left[0;2\right]\end{array}\right.\)

mà : \(\begin{cases}f\left(0\right)=e^3\\f\left(1\right)=e\\f\left(2\right)=e^5\end{cases}\) \(\Rightarrow\begin{cases}Max_{x\in\left[0;2\right]}f\left(x\right)=e^5;x=1\\Min_{x\in\left[0;2\right]}f\left(x\right)=e;x=2\end{cases}\)

 

2. \(f\left(x\right)=\ln\left(x^2-x+1\right)\) trên đoạn \(\left[1;3\right]\)

Mà \(\begin{cases}f\left(1\right)=0\\f\left(3\right)=\ln7\end{cases}\) \(\Leftrightarrow\begin{cases}Max_{x\in\left[1;3\right]}f\left(x\right)=\ln7;x=3\\Min_{x\in\left[1;3\right]}f\left(x\right)=0;x=1\end{cases}\)

16 tháng 5 2016

Ta có : \(f'\left(x\right)=2x+\frac{2}{1-2x}=\frac{-4x^2+2x+2}{1-2x}=0\Leftrightarrow-4x^2+2x+2=0\)

                                                                   \(\Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{2}\in\left[-2;0\right]\\x=1\notin\left[-2;0\right]\end{array}\right.\)

Mà :

    \(\begin{cases}f\left(-2\right)=4-\ln5;x=-2\\f\left(-\frac{1}{2}\right)=\frac{1}{4}-\ln2=\frac{1-4\ln2}{4};x=-\frac{1}{2}\\\end{cases}\)

6 tháng 2 2022

f'(x)>0 với mọi x khác -8, suy ra hàm số đã cho đồng biến trên [0;3].

Giá trị nhỏ nhất của f(x) trên [0;3] là (-m^2)/8. Ta có: (-m^2)/8=2.

Suy ra, không có giá trị nào của số thực m thỏa yêu cầu đề bài.

6 tháng 2 2022

sai

NV
5 tháng 10 2021

\(f'\left(x\right)=2-\dfrac{\pi}{2}sin\left(\dfrac{\pi x}{3}\right)=\dfrac{1}{2}\left(4-\pi sin\left(\dfrac{\pi x}{2}\right)\right)\)

Do \(\left|\pi sin\left(\dfrac{\pi x}{2}\right)\right|\le\pi< 4\Rightarrow f'\left(x\right)>0\) ; \(\forall x\)

\(\Rightarrow f\left(x\right)\) đồng biến trên R

\(\Rightarrow f\left(x\right)_{min}+f\left(x\right)_{max}=f\left(-2\right)+f\left(2\right)=-4+cos\left(-\pi\right)+4+cos\left(\pi\right)=-2\)