Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(-\left(-\frac{4}{9}x-\frac{2}{15}\right)^6\le0\forall x\)
\(-\left(-\frac{4}{9}x-\frac{2}{15}\right)^6+3\le3\forall x\)
Dấu = xảy ra khi \(-\left(-\frac{4}{9}x-\frac{2}{15}\right)^6=0\)
\(\Leftrightarrow x=-\frac{3}{10}\)
Vậy MaxB=3 tại x=-3/10
Hay\(B\le3\forall x\)
Cậu viết rõ ra một chút được không nhìn thế này hơi khó hiểu a
\(A=\left(2x-1\right)^4+3\)
mà \(\left(2x-1\right)^4\ge0,\forall x\)
\(\Rightarrow A=\left(2x-1\right)^4+3\ge0+3=3\)
\(\Rightarrow GTNN\left(A\right)=3\left(x=\dfrac{1}{2}\right)\)
\(B=-\left(8x-\dfrac{4}{5}\right)^6+1\)
mà \(-\left(8x-\dfrac{4}{5}\right)^6\le0,\forall x\)
\(\Rightarrow B=-\left(8x-\dfrac{4}{5}\right)^6+1\le0+1=1\)
\(\Rightarrow GTLN\left(B\right)=1\left(x=\dfrac{1}{10}\right)\)
gtnn là 1 khi \(2x+\frac{1}{3}\)=0
=>x=\(-\)\(\frac{1}{6}\)
Vì \(\left(2x+\frac{1}{4}\right)^4\ge0;\left|y+\frac{11}{3}\right|\ge0\)
Suy ra:\(\left(2x+\frac{1}{4}\right)^4\ge0;\left|y+\frac{11}{3}\right|-1\ge-1\)
Vậy dấu = xảy ra khi \(\Rightarrow\orbr{\begin{cases}2x+\frac{1}{4}=0\\y+\frac{11}{3}=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{1}{8}\\y=-\frac{11}{3}\end{cases}}\)
Min A=-1 khi \(x=-\frac{1}{8};y=-\frac{11}{3}\)
a) |x+3/4| >/ 0
|x+3/4| + 1/2 >/ 1/2
MinA= 1/2 <=> x+3/4 =0 hay x= -3/4
b) 2|2x-4/3| >/ 0
2|2x-4/3| -1 >/ -1
MinB = -1 <=> 2|2x-4/3| = 0 hay x=2/3
Bài tiếp théo:
a) -2|x+4| \< 0
-2|x+4| +1 \< 1
MaxA=1 <=> -2|x+4| = 0 hay = -4
b) -3|x-5| \< 0
-3|x-5| + 11/4 \< 11/4
MaxB=11/4 <=> -3|x-5| = 0 hay x=-5
Theo đề bài ta có: \(A=\left(2x+\frac{1}{3}\right)^4-1\)
Nhận xét: \(\left(2x+\frac{1}{3}\right)^4\ge0\forall x\)
\(\Rightarrow\left(2x+\frac{1}{3}\right)^4-1\ge-1\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left(2x+\frac{1}{3}\right)^4=0\Rightarrow x=\frac{-1}{6}\)
Vậy \(minA=-1\Leftrightarrow x=\frac{-1}{6}\)
Theo đề bài, ta có:
\(A=\left(2x+\frac{1}{3}\right)^4-1\)
Nhận xét:
\(\left(2x+\frac{1}{3}\right)^4\ge0\forall x\)
\(\Rightarrow\left(2x+\frac{1}{3}\right)^4-1\ge-1\forall x\)
Dấu\("="\)xảy ra khi \(\Leftrightarrow\left(2x+\frac{1}{3}\right)^4=0\Rightarrow x=\frac{-1}{6}\)
Vậy \(A=-1\Leftrightarrow x=\frac{-1}{6}\)