K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2017

a) A=x2+8x

=x2+8x+16-16

=(x+4)2-16

\(\left(x+4\right)^2\ge0\forall x\in R\Rightarrow A\ge-16\)

MinA=-16 khi (x+4)2=0 <=> x+4=0 <=> x=-4

b) B=-2x2+8x-15

= -(2x2-8x+15)

=-\(\left[\left(\sqrt{2}x\right)^2-2.\sqrt{2}x.2\sqrt{2}+\left(2\sqrt{2}\right)^2-\left(2\sqrt{2}\right)^2+15\right]\)

=\(-\left[\left(\sqrt{2}x-2\sqrt{2}\right)^2+7\right]\)

\(=-\left(\sqrt{2}x-2\sqrt{2}\right)^2-7\le7\)

MaxB=-7 khi x=2

8 tháng 8 2017

b) \(-2x^2+8x-15=-2\left(x^2-4x+4\right)-7=-2\left(x-2\right)^2-7\le-7\)

Đẳng thức xảy rA \(\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)

7 tháng 8 2017

Ta có : A = x2 + 8x + 16 - 16

=> A = (x2 + 8x + 16) - 16

=> A = (x + 4)2 - 16

Vì (x + 4)2 \(\ge0\forall x\)

Nên : A = (x + 4)2 - 16 \(\ge-16\forall x\)

Vậy Amin = -16 khi x = -4

7 tháng 8 2017

\(A=x^2+8x\)

\(=x^2+2.x.4+16-16\)

\(=\left(x+4\right)^2-16\)

\(\Rightarrow A\ge-16\forall x\)

Dấu ''='' xảy ra khi và chỉ khi: x + 4 = 0<=> x=-4

Vậy giá trị nhỏ nhất của A là -16 khi x =- 4

b, \(B=-2x^2+8x-15\)

\(=-2\left(x^2-4x+\frac{15}{2}\right)\)

\(=-2\left(x^2-2.x.2+4+\frac{7}{2}\right)\)

\(=-\left(x-2\right)^2-7\)

\(\Rightarrow B\le-7\forall x\)

Dấu ''='' xảy ra khi và chỉ khi: x - 2 = 0 <=> x =2

Vậy giá trị lớn nhất của B là -7 khi x =2.

4 tháng 8 2023

a) \(M=x^2-3x+10\)

\(M=x^2-2\cdot\dfrac{3}{2}\cdot x+\dfrac{9}{4}+\dfrac{31}{4}\)

\(M=\left(x^2-2\cdot\dfrac{3}{2}\cdot x+\dfrac{9}{4}\right)+\dfrac{31}{4}\)

\(M=\left(x-\dfrac{3}{2}\right)^2+\dfrac{31}{4}\)

Mà: \(\left(x-\dfrac{3}{2}\right)^2\ge0\) nên: \(M=\left(x-\dfrac{3}{2}\right)^2+\dfrac{31}{4}\ge\dfrac{31}{4}\)

Dấu "=" xảy ra 

\(\left(x-\dfrac{3}{2}\right)^2+\dfrac{31}{4}=\dfrac{31}{4}\Leftrightarrow\left(x-\dfrac{3}{2}\right)^2=0\)

\(\Leftrightarrow x-\dfrac{3}{2}=0\Leftrightarrow x=\dfrac{3}{2}\)

Vậy: \(M_{min}=\dfrac{31}{4}\) với \(x=\dfrac{3}{2}\)

b) \(N=2x^2+5y^2+4xy+8x-4y-100\)

\(N=x^2+x^2+4y^2+y^2+4xy+8x-4y-120+16+4\)

\(N=\left(x^2+4xy+4y^2\right)+\left(x^2+8x+16\right)+\left(y^2-4y+4\right)-120\)

\(N=\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2-120\)

Mà:

\(\left\{{}\begin{matrix}\left(x+2y\right)^2\ge0\\\left(x+4\right)^2\ge0\\\left(y-2\right)^2\ge0\end{matrix}\right.\) nên \(N=\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2-120\ge120\)

Dấu "=" xảy ra:

\(\left\{{}\begin{matrix}\left(x+2y\right)^2=0\\\left(x+4\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-4+2y=0\\x=-4\\y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=-4\\y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=2\end{matrix}\right.\)

Vậy: \(N_{min}=120\) khi \(\left\{{}\begin{matrix}x=-4\\y=2\end{matrix}\right.\)

4 tháng 8 2023

a

\(M=x^2-3x+10=x^2-2.\dfrac{3}{2}.x+\dfrac{9}{4}+\dfrac{31}{4}\\ =\left(x-\dfrac{3}{2}\right)^2+\dfrac{31}{4}\ge\dfrac{31}{4}\)

Min M \(=\dfrac{31}{4}\) khi và chỉ khi \(x=\dfrac{3}{2}\)

4 tháng 8 2023

\(D=5-8x-x^2\\ =-\left[x^2+2.x.4+16\right]+21\\ =-\left(x+4\right)^2+21\le21\forall x\in R\\ \Rightarrow max_D=21.khi.x=-4\)

4 tháng 8 2023

\(E=4x-x^2+1\\ =-\left(x^2-2.x.2+4^2\right)+17\\ =-\left(x-2\right)^2+17\le17\forall x\in R\\ Vậy:max_E=17.khi.\left(x-2\right)=0\Leftrightarrow x=2\)

30 tháng 7 2018

A =  2 x 2 - 8 x - 10

= 2 x 2 - 4 x + 4 - 18 = 2 x - 2 2 - 18

Do 2 x - 2 2  ≥ 0 với mọi x ⇒ 2 x - 2 2  – 18 ≥ −18

A = -18 khi và chỉ khi x - 2 = 0 hay x = 2

Do đó giá trị nhỏ nhất của biểu thức A bằng -18 tại x = 2

26 tháng 8 2020

A = x2 + 4x + 7

   = ( x2 + 4x + 4 ) + 3

   = ( x + 2 )2 + 3

( x + 2 )2 ≥ 0 ∀ x => ( x + 2 )2 + 3 ≥ 3

Đẳng thức xảy ra <=> x + 2 = 0 => x = -2

=> MinA = 3 <=> x = -2

B = 2x2 - 6x 

   = 2( x2 - 3x + 9/4 ) - 9/2

   = 2( x - 3/2 )2 - 9/2

2( x - 3/2 )2 ≥ 0 ∀ x => 2( x - 3/2 )2 -9/2 ≥ -9/2 

Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2

=> MinB = -9/2 <=> x = 3/2

C = -2x2 + 8x - 15

    = -2( x2 - 4x + 4 ) - 7

    = -2( x - 2 )2 - 7

-2( x - 2 )2 ≤ 0 ∀ x => -2( x - 2 )2 - 7 ≤ -7

Đẳng thức xảy ra <=> x - 2 = 0 => x = 2

=> MaxC = -7 <=> x = 2

2 tháng 8 2018

\(A=3x-x^2=-\left(x^2-3x+\frac{9}{4}\right)+\frac{9}{4}=-\left(x-\frac{3}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\)

Vậy GTLN của A là \(\frac{9}{4}\)khi x = \(\frac{3}{2}\)

\(B=7-8x-x^2=-\left(x^2+8x+16\right)+23=-\left(x+4\right)^2+23\le23\)

Vậy GTLN của B là 23 khi x = -4

\(C=x^2-20x+101=\left(x^2-20x+100\right)+1=\left(x-10\right)^2+1\ge1\)

Vậy GTNN của C là 1 khi x = 10

\(D=3x^2-6x+11=3\left(x^2-2x+1\right)+8=3\left(x-1\right)^2+8\ge8\)

Vậy GTNN của D là 8 khi x = 1

2 tháng 8 2018

\(a,A=3x-x^2=-x^2+3x=-x^2+2.\frac{3}{2}x-\frac{9}{4}+\frac{9}{4}=-\left(x-\frac{3}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\)

Vậy Max A = 9/4 <=> x = 3/2

\(b,B=7-8x-x^2=-x^2-8x+7=-x^2-2.4x-16+23=-\left(x+4\right)^2+23\ge23\)

Vậy MinB = 23 <=> x = -4

\(c,C=x^2-20x+101=x^2-2.10x+10^2+1=\left(x-10\right)^2+1\ge1\)

Vậy MinC = 1 <=> x = 10

\(d,D=3x^2-6x+11\)

\(D=\left(\sqrt{3}x\right)^2-2.\sqrt{3}x.\sqrt{3}+\left(\sqrt{3}\right)^2+8=\left(\sqrt{3}x-\sqrt{3}\right)^2+8\ge8\)

Vậy MinD = 8<=> x=1

9 tháng 7 2019

\(B=x^2+8x+16-16\)

\(B=\left(x+4\right)^2-16\)

có : \(\left(x+4\right)^2\ge0\Rightarrow\left(x+4\right)^2-16\ge-16\)

\(\Rightarrow B\ge-16\)

Dấu "=" xảy ra khi 

(x + 4)2 = 0 => x + 4 = 0 => x = - 4

vậy Min B = -16 khi x = -4

9 tháng 7 2019

\(B=x^2+8x\)

\(=x^2.2.x.4+16-16\)

\(=\left(x+4\right)^2-16\)

Vì \(\left(x+4\right)^2\ge0;\forall x\)

\(\Rightarrow\left(x+4\right)^2-16\ge0-16;\forall x\)

Hay\(B\ge-16;\forall x\)

Dấu "=" xảy ra\(\Leftrightarrow x+4=0\)

                       \(\Leftrightarrow x=-4\)

Vậy MIN B= -16 \(\Leftrightarrow x=-4\)

27 tháng 3 2017

a) Từ M = x − 3 2 2 + 31 4 ≥ 31 4 ⇒ M min = 31 4 ⇔ x = 3 2 .  

b) Ta có N = ( x   +   2 y ) 2   +   ( y   –   2 ) 2   +   ( x   +   4 ) 2   –   120   ≥   -   120 .

Tìm được N min  = -120 Û x = -4 và y = 2.