K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2016

Đăng từng bài thôi

3 tháng 11 2016

bạn nói quá chuẩn

dăng từng bài thôi dể nhưng người khác con suy nghĩ

a) Xét ΔBAD vuông tại A và ΔBHD vuông tại H có 

BD chung

\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))

Do đó: ΔBAD=ΔBHD(cạnh huyền-góc nhọn)

14 tháng 10 2021

ta có:
             A + B + C = 180o(đl)
thay số: 100o + (B+C) = 180o
         => B+C=180o- 100o=80o
mà B-C= 20o 
         => 2C = 80o - 20o = 60o
         => C = 60o: 2= 30o
         => B = 30o + 20o= 50o
 
vậy C= 30o
        B= 50o
 

11 tháng 1 2023

+)ΔABC vuông tại A \(\Rightarrow\widehat{A}=90^o\)

+)Áp dụng định lý tổng ba góc trong tam giác vào tam giác ABC, ta có:

\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)

\(=>90^o+40^o+\widehat{C}=180^o\)

\(=>\widehat{C}=180^o-90^o-40^o=50^o\)

Vậy \(\widehat{C}=50^o\)

------------------------------------------

+)Tam giác ABC vuông tại B \(\Rightarrow\widehat{B}=90^o\)

+)\(\widehat{A}=2.\widehat{C}\Rightarrow\widehat{A}+\widehat{C}=2.\widehat{C}+\widehat{C}=3.\widehat{C}\)

+)Áp dụng định lý tổng ba góc trong tam giác vào tam giác ABC, ta có:

\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)

\(\Rightarrow\widehat{A}+90^o+\widehat{C}=180^o\)

\(=>\widehat{A}+\widehat{C}=180^o-90^o\)

\(=>3.\widehat{C}=90^o\)

\(=>\widehat{C}=\dfrac{90^o}{3}=30^o\)

+)\(\widehat{A}=2.\widehat{C}\Rightarrow\widehat{A}=2.30^o=60^o\)

Vậy: \(\widehat{A}=60^o\) ; \(\widehat{C}=30^o\)

1: góc C=90-40=50 độ

2: góc A=2/3*90=60 độ

góc C=90-60=30 độ

A)Tam giác ABC = tam giác DEG ta có:

=>A =D = 20 độ ( 2 góc tương ứng)

=> C = G = 60 độ

=> E = B = 100 độ

B) DG = AC =5cm

22 tháng 6 2019

a ) Do \(\Delta ABC=\Delta DEG\)\(\Rightarrow\widehat{A}=\widehat{D}\) ; \(\widehat{B}=\widehat{E}\) ; \(\widehat{C}=\widehat{G}\)

Vì \(\widehat{B}=\widehat{E}\)mà \(\widehat{E}=100^o\Rightarrow\widehat{B}=100^o\)

Vậy \(\Delta ABC\)có \(\widehat{A}=20^o;\widehat{B}=100^o;\widehat{C}=60^o\)

Vì \(\widehat{C}=\widehat{G}\) mà \(\widehat{C}=60^o\Rightarrow\widehat{G}=60^o\)

    \(\widehat{A}=\widehat{D}\) mà \(\widehat{A}=20^o\Rightarrow\widehat{D}=20^o\)

Vậy \(\Delta DEG\) có \(\widehat{D}=20^o;\widehat{E}=100^o;\widehat{G}=60^o\)

b ) Do \(\Delta ABC=\Delta DEG\Rightarrow AB=DE\)\(BC=EG\)\(AC=DG\)

mà DG = 5cm => AC = DG = 5cm

Vậy \(\Delta ABC\) có AC = 5cm

a: Ta có: \(\widehat{C}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{A}}{3}\)

\(\Leftrightarrow\left\{{}\begin{matrix}\widehat{B}=2\cdot\widehat{C}\\\widehat{A}=3\cdot\widehat{C}\end{matrix}\right.\)

Xét ΔABC có

\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

\(\Leftrightarrow6\cdot\widehat{C}=180^0\)

\(\Leftrightarrow\widehat{C}=30^0\)

Suy ra: \(\widehat{A}=90^0\)

Xét ΔABC có \(\widehat{A}=90^0\)

nên ΔABC vuông tại A

b: Ta có: \(\widehat{B}+\widehat{C}=90^0\)

\(\widehat{HAC}+\widehat{C}=90^0\)

Do đó: \(\widehat{B}=\widehat{HAC}\)

Ta có: \(\widehat{B}+\widehat{C}=90^0\)

\(\widehat{BAH}+\widehat{B}=90^0\)

Do đó: \(\widehat{C}=\widehat{BAH}\)

Bài 4: 

a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

b: Xét ΔABE có BA=BE

nên ΔABE cân tại B

mà \(\widehat{ABE}=60^0\)

nên ΔABE đều

c: Xét ΔABC vuông tại A có 

\(\cos B=\dfrac{AB}{BC}\)

=>5/BC=1/2

hay BC=10(cm)

29 tháng 1 2022

\(\Rightarrow\dfrac{x-1}{2011}-1+\dfrac{x-2}{2010}-1+\dfrac{x-3}{2009}-1=\dfrac{x-4}{2008}-1-2\)

\(\Rightarrow\dfrac{x-2012}{2011}+\dfrac{x-2012}{2010}+\dfrac{x-2012}{2009}=\dfrac{x-2012}{2008}-\dfrac{x-2012}{\left(x-2012\right)\div2}\)

\(\Rightarrow\dfrac{1}{2011}+\dfrac{1}{2010}+\dfrac{1}{2009}-\dfrac{1}{2008}-\dfrac{1}{\left(x-2012\right)\div2}=0\)

Vì vế bên trên \(\ge0\)

\(x-2012=0\)

\(x=2012\)