Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(M\in\Delta_1\Rightarrow M\left(2t+3;t\right)\)
.
Khoảng cách từ M đến đường thẳng \(\Delta_2\)bằng \(\dfrac{1}{\sqrt{2}}\)
\(\Rightarrow\)\(d\left(M,\Delta_2\right)=\dfrac{1}{\sqrt{2}}\)
\(\Leftrightarrow\dfrac{\left|2t+3+t+1\right|}{\sqrt{1^2+1^2}}=\dfrac{1}{\sqrt{2}}\)
\(\Leftrightarrow\left|3t+4\right|=1\)\(\Leftrightarrow\left[{}\begin{matrix}t=-1\\t=\dfrac{-5}{3}\end{matrix}\right.\)
* \(t=-1\)
\(\Rightarrow M\left(1;-1\right)\)
*\(t=\dfrac{-5}{3}\)
\(\Rightarrow M\left(\dfrac{-1}{3};\dfrac{-5}{3}\right)\)
a: Tọa độ A là:
4x-3y-12=0 và 4x+3y-13=0
=>A(25/8;1/6)
Tọa độ B là:
x=0 và 4x-3y-12=0
=>x=0 và y=-4
Tọa độ C là:
x=0 và 4x+3y-13=0
=>y=13/3
b: A(25/8;1/6); B(0;-4); C(0;13/3)
\(AB=\sqrt{\left(0-\dfrac{25}{8}\right)^2+\left(-4-\dfrac{1}{6}\right)^2}=\dfrac{125}{24}\left(cm\right)\)
\(AC=\sqrt{\left(0-\dfrac{25}{8}\right)^2+\left(\dfrac{13}{3}-\dfrac{1}{6}\right)^2}=\dfrac{125}{24}\left(cm\right)\)
\(BC=\sqrt{0^2+\left(\dfrac{13}{3}+4\right)^2}=\dfrac{25}{3}\)
\(P=\dfrac{1}{2}\left(\dfrac{125}{24}+\dfrac{125}{24}+\dfrac{25}{3}\right)=\dfrac{75}{8}\)
\(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{-7}{25}\)
=>sin A=24/25
\(S_{ABC}=\dfrac{1}{2}\cdot\dfrac{24}{25}\cdot\dfrac{125}{24}\cdot\dfrac{125}{24}=\dfrac{625}{48}\)
=>r=625/48:75/8=25/18
Gọi \(M\left(x;y\right)\) là điểm thuộc phân giác của 2 đường thẳng
\(\Leftrightarrow d\left(M;\Delta_1\right)=d\left(M;\Delta_2\right)\)
a/ \(\frac{\left|2x+4y+7\right|}{\sqrt{2^2+4^2}}=\frac{\left|5x+3y+7\right|}{\sqrt{5^2+3^2}}\)
\(\Leftrightarrow\sqrt{17}\left|2x+4y+7\right|=\sqrt{10}\left|5x+3y+7\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{17}x+4\sqrt{17}y+7\sqrt{17}=5\sqrt{10}x+3\sqrt{10}y+7\sqrt{10}\\2\sqrt{17}x+4\sqrt{17}y+7\sqrt{17}=-5\sqrt{10}x-3\sqrt{10}y-7\sqrt{10}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(2\sqrt{17}-5\sqrt{10}\right)x+\left(4\sqrt{17}-3\sqrt{10}\right)y+7\sqrt{17}-7\sqrt{10}=0\\\left(2\sqrt{17}+5\sqrt{10}\right)x+\left(4\sqrt{17}+3\sqrt{10}\right)y+7\sqrt{17}+7\sqrt{10}=0\end{matrix}\right.\)
Câu b bạn làm tương tự. Số xấu quá nhìn chẳng muốn làm luôn
hình như bạn nhầm \(\sqrt{5^2+3^2}=\sqrt{34}\) chứ sai lại là \(\sqrt{17}\)
Giả sử: \(d_{\left(M,\Delta_1\right)}=d_{\left(M,\Delta_2\right)}\)
\(\Rightarrow\dfrac{\left|2x+4y+7\right|}{\sqrt{2^2+4^2}}=\dfrac{\left|x-2y-3\right|}{\sqrt{1^2+2^2}}\)
\(\Rightarrow\sqrt{5}\left|2x+4y+7\right|=2\sqrt{5}\left|x-2y-3\right|\)
\(\Rightarrow\left|2x+4y+7\right|=2\left|x-2y-3\right|\)
* \(2x+4y+7=2\left(x-2y-3\right)\)
\(\Rightarrow8y+13=0\)
*\(2x+4y+7=-2\left(x-2y-3\right)\)
\(\Rightarrow4x+1=0\)
\(\Delta_1\) nhận \(\left(2;1\right)\) là 1 vppt; \(\Delta_2\) nhận \(\left(1;m\right)\) là 1 vtpt
a/ Để 2 đường thẳng song song \(\Rightarrow2m=1\Rightarrow m=\frac{1}{2}\)
Khi đó pt \(\Delta_2\) viết lại: \(2x+y+2=0\)
Khoảng cách 2 đường thẳng: \(d=\frac{\left|c_1-c_2\right|}{\sqrt{a^2+b^2}}=\frac{\left|-3-2\right|}{\sqrt{2^2+1^2}}=\sqrt{5}\)
b/Với \(m=2\Rightarrow\Delta_2\) nhận \(\left(1;2\right)\) là 1 vtpt
\(cos\left(\Delta_1;\Delta_2\right)=\frac{\left|2.1+1.2\right|}{\sqrt{2^2+1^2}.\sqrt{1^2+2^2}}=\frac{4}{5}\)
\(\Rightarrow sin\left(\Delta_1;\Delta_2\right)=\sqrt{1-\left(\frac{4}{5}\right)^2}=\frac{3}{5}\)
c/ Chắc là k/c từ gốc O
\(d\left(O;\Delta_1\right)=\frac{\left|2.0+1.0-3\right|}{\sqrt{2^2+1^2}}=\frac{3}{\sqrt{5}}\)
\(d\left(O;\Delta_2\right)=\frac{\left|1.0+m.0+1\right|}{\sqrt{1+m^2}}=\frac{1}{\sqrt{1+m^2}}\)
\(\Rightarrow\frac{1}{\sqrt{1+m^2}}=\frac{6}{\sqrt{5}}\Leftrightarrow1+m^2=\frac{5}{36}\Leftrightarrow m^2=-\frac{29}{36}< 0\)
Không tồn tại m thỏa mãn
d/ I là điểm nào bạn?
Trả Lời
Tick nha