Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{-2018}{x^2-10x+2012}\)
ta có:\(x^2-10x+2012=x^2-2.x.5+5^2+1987=\left(x-5\right)^2+1987\ge1987\)vì (x-5)2\(\ge\)0)
dấu = xảy ra khi x-5=0
=> x=5
vì tử thức âm mà mẫu thức luôn lớn hơn 0
=> E đạt giá trị nhỏ nhất khi mẫu thức nhỏ nhất
khi đó Min A=\(-\frac{2018}{1987}\)đạt tại x=5
\(A=|x-2018|-|x-2019|\ge|x-2018-x-2019|=|-1|=1\)
\(B\ge-17\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=-2\\y=-x-5=2-5=-3\end{matrix}\right.\)
\(A=\dfrac{2021-x}{11-x}=\dfrac{11-x+2010}{11-x}=\dfrac{11-x}{11-x}+\dfrac{2010}{11-x}=1+\dfrac{2010}{11-x}\)
Để A đạt GTNN thì \(\dfrac{2010}{11-x}\) nhỏ nhất
\(\Rightarrow11-x=2010\Leftrightarrow x=-1999\)
Khi đó \(A=2\)
Để A đạt GTLN thì \(\dfrac{2010}{11-x}\) lớn nhất
\(\Rightarrow11-x=1\Leftrightarrow x=10\)
Khi đó \(A=2011\)
Vậy \(Min_A=2\) khi \(x=-1999\) và \(Max_A=2011\) khi \(x=10\)
Đặt \(A=\left|x-2018\right|+\left|x-2020\right|\)
\(\ge\left|\left(x-2018\right)+\left(2020-x\right)\right|=2\)
(Dấu "="\(\Leftrightarrow\left(x-2018\right)\left(2020-x\right)\ge0\)
\(\Leftrightarrow2018\le x\le2020\))
Vậy \(A_{min}=2\Leftrightarrow2018\le x\le2020\)
Đặt \(B=\left|x-2019\right|\ge0\)
(Dấu "="\(\Leftrightarrow x-2019=0\Leftrightarrow x=2019\))
Vậy \(B_{min}=0\Leftrightarrow x=2019\)
\(\Rightarrow\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|\ge2\)
(Dấu "="\(\Leftrightarrow\hept{\begin{cases}2018\le x\le2020\\x=2019\end{cases}}\Leftrightarrow x=2019\))
Vậy \(BT_{min}=2\Leftrightarrow x=2019\)
Ta có |x+2018| >= x+2018
| x-2018|>=2018-x
=>|x+2018|+|x-2018|>= x+2018+2018-x = 4036
Dấu = xảy <=> x+2018 >=0=> x>=-2018
x-2018<=0 x<=2018
Vậy GTNN A=4036 <=> -2018=<x<=2018
Thưa bạn o có GTLN
T i ck mja
\(E=\left|x+11\right|+\left|x+17\right|+\left|2018+x\right|\)
\(\left|x+11\right|+\left|2018+x\right|=\left|-x-11\right|+\left|2018+x\right|\ge\left|-x-11+2018+x\right|=2007\)
dấu = xảy ra khi \(\left(-x-11\right).\left(2018+x\right)\ge0\Rightarrow-2018\le x\le-11\)(1)
\(\left|x+17\right|\ge0\)
dấu = xảy ra khi \(x+17=0\Rightarrow x=-17\)(2)
\(\Rightarrow E\ge2007\)
dấu = xảy ra khi dấu = ở (1) và (2) đồng thời xảy ra
=> x=-17
Vậy Min E=2007 khi x=-17