K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2018

\(I=\left(x-2\right)^2+\left(x-5\right)^2\)

Ta có :

\(\left(x-2\right)^2\ge0\forall\) và \(\left(x-5\right)^2\ge0\forall x\)

=> \(I\ge0\)

Dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=0\\\left(x-5\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\x=5\end{cases}}\)

=> không có giá trị nào để I đạt giá trị nhỏ nhất .

20 tháng 8 2018

\(I=\left(x-2\right)^2+\left(x-5\right)^2\)

Đặt \(x-2=t\)

\(\Rightarrow I=t^2+\left(t-3\right)^2\)

\(I=t^2+t^2-6t+9\)

\(I=2t^2-6t+9\)

\(I=2.\left(t^2-2.t.1,5+2,25\right)+4,5\)

\(I=2.\left(t-1,5\right)^2+4,5\)

Ta có: \(2.\left(t-1,5\right)^2\ge0\forall t\)

\(\Rightarrow2.\left(t-1,5\right)^2+4,5\ge4,5\forall t\)

\(I=4,5\Leftrightarrow2.\left(t-1,5\right)^2=0\Leftrightarrow t-1,5=0\Leftrightarrow t=1,5\)

\(\Rightarrow x-2=1,5\)

\(\Rightarrow x=3,5\)

Vậy \(I_{min}=4,5\Leftrightarrow x=3,5\)

Tham khảo nhé~

2 tháng 8 2016

tại sao học 24 ngu thế , bài sai rồi mà vẵn chọn ak , giáo viên trang này bị khùng điên cả ak , hay là mắt đui ko biết nhìn mà bấm ngu thế

2 tháng 8 2016

\(\left(x-4\right)^2+\left(x-5\right)^2\)

\(=x^2-8x+16+x^2-10x+25=2x^2-18x+41\)

\(=2\left(x^2-9x+\frac{41}{2}\right)=2\left[x^2-2.x.\frac{9}{2}+\left(\frac{9}{2}\right)^2+\frac{1}{4}\right]=2\left(x-\frac{9}{2}\right)^2+\frac{1}{2}\)

Vì \(\left(x-\frac{9}{2}\right)^2\ge0\)

nên \(2\left(x-\frac{9}{2}\right)\ge0\)

do đó \(2\left(x-\frac{9}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)

Vậy \(Min_{\left(x-4\right)^2+\left(x-5\right)^2}=\frac{1}{2}\)khi \(x-\frac{9}{2}=0\Leftrightarrow x=\frac{9}{2}\)

3 tháng 3 2017

\(F\)=5 ; \(I\)=91

7 tháng 3 2017

đặt |3x-5|= y ,ĐK : y >/ 0 

F=y2-6y+10 đến đây đơn giản

ý sau khai triển tử của I rồi rút gọn được I=10x+40/x+41 >/ 2.20+41=81 (áp dụng bđt AM-GM)

4 tháng 9 2018

Đặt \(|x-4|=t\)

Khi đó: \(C=t\left(2-t\right)\)

               \(=2t-t^2\)

               \(=-t^2+2t-1+1\)

               \(=-\left(t^2-2t+1\right)+1\)

               \(=-\left(t-1\right)^2+1\le1\forall t\)

Dấu "=" xảy ra khi: 

\(t-1=0\Rightarrow t=1\Rightarrow|x-4|=1\Rightarrow\orbr{\begin{cases}x-4=1\\x-4=-1\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=3\end{cases}}}\)

Vậy GTLN của C là 1 khi \(\orbr{\begin{cases}x=5\\x=3\end{cases}}\)

Chúc bạn học tốt.

NV
10 tháng 1 2021

Bạn tham khảo:

Cho ba số thực dương x;y;z thoả mãn \(5\left(x y z\right)^2\ge14\left(x^2 y^2 z^2\right)\) Tìm giá trị lớn nhất nhỏ nh... - Hoc24

11 tháng 7 2020

Bài làm:

+ \(C=10\left(x^2-2\right)+5=10x^2-20+5=10x^2-15\ge-15\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(10x^2=0\Rightarrow x=0\)

Vậy \(Min\left(C\right)=-15\Leftrightarrow x=0\)

+ \(D=\left(7-x\right)\left(2x+1\right)=-2x^2+13x+7=-2\left(x^2-\frac{13}{2}x+\frac{169}{16}\right)-\frac{225}{8}\)

\(=-2\left(x-\frac{13}{4}\right)^2-\frac{225}{8}\le-\frac{225}{8}\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(-2\left(x-\frac{13}{4}\right)^2=0\Rightarrow x=\frac{13}{4}\)

Vậy \(Max\left(D\right)=-\frac{225}{8}\Leftrightarrow x=\frac{13}{4}\)

+ \(H=x^2+y^2+2x-4y+10=\left(x^2+2x+1\right)+\left(y^2-4y+4\right)+5\)

\(=\left(x+1\right)^2+\left(y-2\right)^2+5\ge5\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-1\\y=2\end{cases}}\)

Vậy \(Min\left(H\right)=5\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}\)

+ \(E=-x^2-4x+6y-y^2-2021=-\left(x^2+4x+4\right)-\left(y^2-6y+9\right)-2008\)

\(=-\left(x+2\right)^2-\left(y-3\right)^2-2008\le-2008\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}-\left(x+2\right)^2=0\\-\left(y-3\right)^2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-2\\y=3\end{cases}}\)

Vậy \(Max\left(E\right)=-2008\Leftrightarrow\hept{\begin{cases}x=-2\\y=3\end{cases}}\)

Học tốt!!!!

3 tháng 3 2017

câu F

chia khoảng cho nhàn: dẽ kiểm soát.

xét khi x<5/3

\(F=\left[\left(3x-5\right)^2+6\left(3x-5\right)+9\right]+1\)

\(F=\left[\left(3x-5\right)+3\right]^2+1\ge1\) đẳng thức khi \(3x-5+3=0\Rightarrow x=\dfrac{2}{3}< \dfrac{5}{3}\left(tmdk\right)\)

xét khi x>=5/3 Tương tự

\(F=\left[\left(3x-5\right)-3\right]+1\ge1\)

đẳng thức khia (3x-5)-3=0=> x=8/3 thủa mãn điều kiện

Kết luận: GTNN (F)=1 khi x=2/3 hoặc 8/3

3 tháng 3 2017

câu I:

\(I=\dfrac{10x^2+41x+40}{x}\)

\(1-I=1-\dfrac{10x^2+41x+40}{x}=\dfrac{-\left(10x^2+40x+40\right)}{x}=\dfrac{-10\left(x+2\right)^2}{x}=A\)

Xem lại đề: khi x> không có GTLN;{sửa x<0}

\(\left\{{}\begin{matrix}x< 0\\A\ge0\end{matrix}\right.\) đẳng thức khi x=-2 \(\Rightarrow GTLN\left(I\right)\le1\)