K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2016

Ta có: P= \(5x^2+4xy+y^2+6x+2y+2016\)

          =  \(\left(4x^2+y^2+1+4x+2y+4xy\right)+\left(x^2+2x+1\right)+2014\)

         =  \(\left(2x+y+1\right)^2+\left(x+1\right)^2+2014\ge2014\)

(Vì \(\left(2x+y+1\right)^2\ge0;\left(x+1\right)^2\ge0\))

Dấu = khi \(\hept{\begin{cases}2x+y+1=0\\x+1=0\end{cases}< =>}\hept{\begin{cases}y=1\\x=-1\end{cases}}\)

Vậy min P =2014 khi x=-1; y=1

10 tháng 9 2017

\(a,A=3x^2-5x+1\)

\(=3\left(x^2-\dfrac{5}{3}x+\dfrac{25}{36}\right)-\dfrac{13}{12}\)

\(=3\left(x-\dfrac{5}{6}\right)^2-\dfrac{13}{12}\)

Với mọi giá trị của x ta có:

\(\left(x-\dfrac{5}{6}\right)^2\ge0\)

\(\Rightarrow3\left(x-\dfrac{5}{6}\right)^2-\dfrac{13}{12}\ge-\dfrac{13}{12}\)

Vậy Min \(A=-\dfrac{13}{12}\)

Để \(A=-\dfrac{13}{12}\) thì \(x-\dfrac{5}{6}=0\Rightarrow x=\dfrac{5}{6}\)

\(b,B=2x^2+5y^2-4x+2y+4xy+2017\)

\(=\left(2x^2-4x+4xy\right)+5y^2+2y+2017\)

\(=2\left(x^2-2x+2xy\right)+5y^2+2y+2017\)

\(=2\left[x^2-2x\left(1-y\right)+\left(1-y\right)^2\right]+5y^2+2y+2017+2\left(1-y\right)^2\)\(=2\left(x-1+y\right)^2+5y^2+2y+2017-2\left(1-y\right)^2\)

\(=2\left(x+y-1\right)^2+5y^2+2y+2017-2+4y-2y^2\)\(=2\left(x+y-1\right)^2+3y^2+6y+2015\)

\(=2\left(x+y-1\right)^2+3\left(y^2+2y+1\right)+2012\)

\(=2\left(x+y-1\right)^2+3\left(y+1\right)^2+2012\)

Với mọi giá trị của x ta có:

\(2\left(x+y-1\right)^2\ge0;3\left(y+1\right)^2\ge0\)

\(\Rightarrow2\left(x+y-1\right)^2+3\left(y+1\right)^2+2012\ge2012\) Vậy : Min B = 2012

Để B = 2012 thì \(\left\{{}\begin{matrix}x+y-1=0\\y+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

3 tháng 6 2018

\(M=\frac{2x^2+4xy+2y^2+8xy}{x+y}=\frac{2\left(x^2+2xy+y^2\right)+2\cdot4xy}{x+y}=\frac{2\left(x+y\right)^2+2\cdot1}{x+y}\)

\(=2\left(x+y\right)+\frac{2}{x+y}>=2\sqrt{2\left(x+y\right)\cdot\frac{2}{x+y}}=2\cdot\sqrt{4}=2\cdot2=4\)(bđt cosi)

dấu = xảy ra khi x=y=\(\frac{1}{2}\)

vậy min M là 4 khi \(x=y=\frac{1}{2}\)

11 tháng 3 2017

A=(5x-3y-2)+ (x+y+1)+ 4

Vậy giá trị nhỏ nhất của A là 4

23 tháng 9 2018

Tacó:

\(S=5x^2+2y^2+4xy-2x+4y+2019\)

\(=\left(4x^2+4xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+2014\)

\(=\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+2014\)

\(\ge2014\)

Dau "=' xảy ra khi x= 1 ; y=-2

21 tháng 2 2019

C/m: \(\sqrt{2x^2+xy+2y^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)

\(\Rightarrow2x^2+xy+2y^2\ge\dfrac{5}{4}\left(x^2+2xy+y^2\right)\)

\(\Leftrightarrow8x^2+4xy+8y^2\ge5x^2+10xy+5y^2\)

\(\Leftrightarrow3\left(x-y\right)^2\ge0\left(LĐ\right)\)

Vậy \(\sqrt{2x^2+xy+2y^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)

CMTT: \(\sqrt{2y^2+yz+2z^2}\ge\dfrac{\sqrt{5}}{2}\left(y+z\right)\);

\(\sqrt{2z^2+zx+2x^2}\ge\dfrac{\sqrt{5}}{2}\left(x+z\right)\)

Vậy H=\(\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+xz+2z^2}\ge\sqrt{5}\left(x+y+z\right)=2019\)Hmin=2019\(\Leftrightarrow x=y=z=\dfrac{\dfrac{2019}{\sqrt{5}}}{3}\)

21 tháng 2 2019

Khos quas

27 tháng 5 2021

\(M=5x^2+y^2-2x+2y+2xy+2004\)

\(=\left(x^2+2x+1\right)+2y\left(x+1\right)+y^2+4x^2-4x+1+2002\)

\(=\left(x+1\right)^2+2y\left(x+1\right)+y^2+\left(2x-1\right)^2+2002\)

\(=\left(x+1+y\right)^2+\left(2x-1\right)^2+2003\ge2002\) với mọi x,y

=> \(M_{min}=2002\Leftrightarrow\left\{{}\begin{matrix}x+y+1=0\\2x-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy \(M_{min}=2002\)

27 tháng 5 2021

Dòng 4 toi viết nhầm nha, là +2002 

24 tháng 11 2017

Mình đang bận nên chỉ nói hướng làm thôi nhá. GTNN thì bạn cộng trừ 1, còn GTLN thì bạn cộng trừ 6. Sau đó bạn sẽ tách ra được thành a+(2x^2+y^2)/x^2+y^2