K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2022

\(=5\left(x^2-\dfrac{4}{5}xy+\dfrac{4}{25}y^2\right)+\dfrac{1}{5}y^2-2y+2023\)

\(=5\left(x-\dfrac{2}{5}y\right)^2+\dfrac{1}{5}\left(y^2-10y+25\right)+2018\)

\(=5\left(x-\dfrac{2}{5}y\right)^2+\dfrac{1}{5}\left(y-5\right)^2+2018>=2018\)

Dấu = xảy ra khi y=5 và x=2/5y=2

2 tháng 9 2018

\(E=5x^2+y^2+10+4xy-14x-6y\)

\(E=\left(2x+y-3\right)^2+\left(x-1\right)^2+6\)

Vì \(\left(2x+y-3\right)^2+\left(x-1\right)^2\ge0\)

Dấu '=" xảy ra.......................

28 tháng 9 2015

 

4x2+5y2-4xy-16y+22

=4x2-4xy+y2+4y2-16xy+16+6

=(2x+y)2+(2x-4)2+6

Vì (2x+y)2;(2x-4)2\(\ge\)0 nên (2x+y)2+(2x-4)2+6\(\ge\)6

Dấu "=" xảy ra khi 2x-4=0 và 2x+y=0

                     <=>  x=2 và 2.2+y=0

                    <=>x=2 và y=-4

Vậy GTNN của biểu thức là 6 tại x=2;y=-4

 

2 tháng 9 2018

\(E=5x^2+y^2+10+4xy-14x-6y\)

\(=\left(4x^2+y^2+4xy\right)-12x-6y+9+x^2-2y+1\)

\(=\left(2x+y\right)^2-6\left(2x+y\right)+9+\left(x-1\right)^2\)

\(=\left(2x+y-3\right)^2+\left(x-1\right)^2\ge0\)

\(\Rightarrow E_{Min}=0\)

\("="\Leftrightarrow x=y=1\)

2 tháng 9 2018

Ta có E= \(\left(4x^2+y^2+9-6y-12x+4xy\right)+\left(x^2-2x+1\right)\)

=\(\left(2x+y-3\right)^2+\left(x-1\right)^2\)

\(\left(2x+y-3\right)^2+\left(x-1\right)^2\) >= 0

=>E>=0 =>GTNN của E=0 khi: \(x-1=0\) =>\(x=1\)

\(2x+y-3=0\) =>\(2x+y=3\)

=> \(2+y=3\) => \(y=1\)

15 tháng 1 2018

2A = 4x^2+6y^2+8xy-16x-4y+36

     = [(4x^2+8xy+4y^2)-2.(2x+2y).4+16]+(2y^2+12y+18)+2

     = (2x+2y-4)^2+2.(y+3)^2+2 >= 2

=> A >= 1

Dấu "=" xảy ra <=> 2x+2y-4=0 và y+3=0 <=> x=5 và y=-3

Vậy GTNN của A = 1 <=> x=5 và y=-3

Tk mk nha

Bài 1:

a: \(M=x^2+4x+4+5=\left(x+2\right)^2+5>=5\)

Dấu '=' xảy ra khi x=-2

b: \(N=x^2-20x+101=x^2-20x+100+1=\left(x-10\right)^2+1>=1\)

Dấu '=' xảy ra khi x=10

3 tháng 10 2021

\(A=\left(4x^2-4xy+y^2\right)+\left(x^2+3x+\dfrac{9}{4}\right)-\dfrac{21}{4}\\ A=\left(2x-y\right)^2+\left(x+\dfrac{3}{2}\right)^2-\dfrac{21}{4}\ge-\dfrac{21}{4}\\ A_{min}=-\dfrac{21}{4}\Leftrightarrow\left\{{}\begin{matrix}2x=y\\x=-\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=-3\end{matrix}\right.\)

\(B=\left[\left(x-1\right)\left(x+2\right)\right]\left[x\left(x+1\right)\right]=\left(x^2+x-2\right)\left(x^2+x\right)\\ B=\left(x^2+x\right)^2-2\left(x^2+x\right)\\ B=\left(x^2+x\right)^2-2\left(x^2+x\right)+1-1=\left(x^2+x-1\right)^2-1\ge-1\\ B_{min}=-1\Leftrightarrow x^2+x-1=0\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2-\dfrac{5}{4}=0\\ \Leftrightarrow\left(x+\dfrac{1-\sqrt{5}}{2}\right)\left(x+\dfrac{1+\sqrt{5}}{2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1-\sqrt{5}}{2}\\x=\dfrac{1+\sqrt{5}}{2}\end{matrix}\right.\)

25 tháng 9 2023

loading...loading...