Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Olm.vn sẽ hướng dẫn em giải bằng phương pháp đánh giá em nhé!
Nếu p = 2 \(\Rightarrow\) 2p2 + 1 = 2.22 + 1 = 9 (nhận)
Nếu p = 3 ⇒ 2p2 + 1 = 2.32 + 1 = 19 (loại)
Nếu p > 3 ⇒ p không chia hết cho 3 ⇒ p2 chia 3 dư 1
⇒ 2p2 : 3 dư 2 ⇒ 2p2 + 1 ⋮ 3 (nhận)
Từ những lập luận trên ta có
\(\forall\) p \(\ne\) 3; p \(\in\) P thì 2p2 + 1 là hợp số
b, p + 4 và p + 8 đều là số nguyên tố.
Nếu p = 2 thì p + 4 = 2 + 4 = 6 loại
Nếu p = 3 thì p + 4 = 3 + 4 = 7; p + 8 = 3 + 8 = 11 (nhận)
Nếu p > 3 ta có: p không chia hết cho 3 ⇒ p = 3k + 1
hoặc p = 3k + 2
th1 : p = 3k + 1 thì p + 8 = 3k + 1 + 8 = 3k + 9 ⋮ 3 (loại)
th2: p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 ⋮ 3 (loại)
Từ những lập luận trên ta có p = 3 là giá trị thỏa mãn đề bài
\(x+2⋮x^2\Rightarrow x+2⋮x.x\Rightarrow2⋮x\left(x+1\right)\Rightarrow x\in\left\{\mp1\right\}\)
shitbo thiếu trường hợp rồi nha bạn!
Để x + 2 chia hết cho x2 thì x + 2 chia hết cho x. Hay \(\frac{x+2}{x}\) nguyên.
Ta có: \(\frac{x+2}{x}=1+\frac{2}{x}\). Để \(\frac{x+2}{x}\) nguyên thì \(\frac{2}{x}\) nguyên hay \(x\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Vậy \(x=\left\{\pm1;\pm2\right\}\)
Ta có: ( Giải chi tiết )
Giả sử có \(-a\) và \(b\) thì:
\(\left(-a\right).b\) ( Vì " - " nhân " + " bằng " - " \(\Rightarrow\left(-\right)< 0\)) \(\Rightarrow\) Loại A.
\(\left(-a\right).b\) ( Như trên ) \(\Rightarrow\) Giữ B.
\(\left(-a\right)+b\).
TH1: (-a) + b = -c ⇒ -c < 0. vd: (-3) + 2 = -1 < 0
TH2: (-a) + b = c ⇒ c > 0. vd: (-1) + 2 = 1 > 0
\(\Rightarrow\) Loại C.
\(\left(-a\right).b\) ( Như trường hợp a,b ) \(\Rightarrow\) Loại D.
Vậy chọn phương án B.
a=0;b=0
a=2;b=2
=> a +b - a . b = 0
a ( b - 1 ) - ( b - 1 ) = 1
( a - 1 ) ( b - 1 ) = 1 = 1 . 1 = - 1 . ( - 1 )
=> a - 1 = 1 va b - 1 =1
hoac a - 1 = - 1 va b - 1 = - 1
( Con lai tu lm nha )
**** nha !!