Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Thay x=1 và y=2 vào (d), ta được:
2m+1=2
hay \(m=\dfrac{1}{2}\)
1) \(y=mx+1\left(m\ne0\right)\left(1\right)\) hay \(mx-y+1=0\)
Để đồ thị hàm số \(\left(1\right)\) đi qua điểm \(M\left(-1;-1\right)\) khi và chỉ khi
\(m.\left(-1\right)+1=-1\)
\(\Leftrightarrow-m=-2\)
\(\Leftrightarrow m=2\)
Vậy hàm số \(\left(1\right):y=2x+1\)
Bạn tự vẽ đồ thị nhé!
2) \(y=\left(m^2-2\right)x+2m+3\left(d\right)\)
Để \(\left(1\right)//\left(d\right)\) khi và chỉ khi
\(\left\{{}\begin{matrix}m^2-2=2\\2m+3\ne1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2=4\\2m\ne-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=\pm2\\m\ne-1\end{matrix}\right.\) \(\Leftrightarrow m=\pm2\) thỏa đề bài
3) Khoảng cách từ gốc O đến đồ thị hàm số \(\left(1\right)\) là:
\(d\left(O;\left(1\right)\right)=\dfrac{m.0-0+1}{\sqrt[]{2^2+1^2}}=\dfrac{2}{\sqrt[]{5}}\)
\(\Leftrightarrow\dfrac{0.m+1}{\sqrt[]{5}}=\dfrac{2}{\sqrt[]{5}}\)
\(\Leftrightarrow0m=1\)
\(\Leftrightarrow m\in\varnothing\)
Vậy không có giá trị nào của m để thỏa mãn đề bài,
Đáp án:
1. Tìm m để đồ thị hàm số (1) đi qua điểm M (−1;−1). Với m tìm được, vẽ đồ thị hàm số (1) trên mặt phẳng tọa độ Oxy
Để đồ thị hàm số (1) đi qua điểm M (−1;−1), ta cần có m(−1)+1=−1. Từ đó ta có m=−2.
Với m=−2, đồ thị hàm số (1) là một đường thẳng có hệ số góc -2 và đi qua điểm M (−1;−1). Ta có thể vẽ đồ thị hàm số như sau:
[Image of the graph of y=-2x+1]
2. Tìm giá trị của m để đồ thị hàm số (1) song song với đường thẳng y (m² - 2) x + 2m+3 =
Hai đường thẳng song song khi hệ số góc của chúng bằng nhau. Do đó, ta có m=m2−2. Từ đó ta có m=2.
3. Tìm m để khoảng cách từ gốc O đến đồ thị hàm số (1) bằng 2 √5
Khoảng cách từ gốc O đến đồ thị hàm số (1) là khoảng cách từ điểm (0;1) đến đường thẳng y=mx+1. Khoảng cách này được tính theo công thức:
d=|m|
Do đó, ta có d=2552=2.
Từ đó, ta có m=2.
Kết luận:
- Giá trị của m để đồ thị hàm số (1) đi qua điểm M (−1;−1) là m=-2.
- Giá trị của m để đồ thị hàm số (1) song song với đường thẳng y (m² - 2) x + 2m+3 = là m=2.
- Giá trị của m để khoảng cách từ gốc O đến đồ thị hàm số (1) bằng 2 √5 là m=2.
Lưu ý:
- Để giải bài toán 1 và 2, ta có thể thay m=-2 vào hàm số (1) và so sánh với tọa độ của điểm M (−1;−1) hoặc tọa độ của một điểm bất kỳ trên đường thẳng y (m² - 2) x + 2m+3 =.
- Để giải bài toán 3, ta có thể sử dụng công thức tính khoảng cách từ một điểm đến một đường thẳng.
chúc bạn học tốt
a/ Hai hàm số có đồ thị // với nhau khi
\(\hept{\begin{cases}m-2=1\\3\ne0\end{cases}}\Leftrightarrow m=3\)
b/ Tọa độ giao điểm 2 đường thẳng là nghiệm của hệ
\(\hept{\begin{cases}y=x+3\\y=2x+1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=5\end{cases}}\)
c/ Gọi điểm mà đường thẳng luôn đi qua là M(a,b) ta thế vào hàm số được
\(b=ma+3\)
\(\Leftrightarrow ma+3-b=0\)
Để phương trình này không phụ thuôc m thì
\(\hept{\begin{cases}a=0\\3-b=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=0\\b=3\end{cases}}\)
Tọa độ điểm cần tìm là M(0, 3)
d/ Ta có khoản cách từ O(0,0) tới (d) là 1
\(\Rightarrow=\frac{\left|0-0m-3\right|}{\sqrt{1^2+m^2}}=\frac{3}{\sqrt{1+m^2}}=1\)
\(\Leftrightarrow\sqrt{1+m^2}=3\)
\(\Leftrightarrow m^2=8\)
\(\Leftrightarrow\orbr{\begin{cases}m=2\sqrt{2}\\m=-2\sqrt{2}\end{cases}}\)
Thay x=1 và y=2 vào (d), ta được:
1(m-1)+m+2=2
=>m-1+m+2=2
=>2m+1=2
=>2m=1
=>\(m=\dfrac{1}{2}\)
Thay m=1/2 vào (d), ta được:
\(y=\left(\dfrac{1}{2}-1\right)x+\dfrac{1}{2}+2=\dfrac{-1}{2}x+\dfrac{5}{2}\)
=>\(\dfrac{1}{2}x-y-\dfrac{5}{2}=0\)
Khoảng cách từ O(0;0) đến (d) là:
\(\dfrac{\left|0\cdot\dfrac{1}{2}+0\cdot\left(-1\right)-\dfrac{5}{2}\right|}{\sqrt{\left(\dfrac{1}{2}\right)^2+\left(-1\right)^2}}=\dfrac{5}{2}:\sqrt{\dfrac{1}{4}+1}\)
\(=\dfrac{5}{2}:\sqrt{\dfrac{5}{4}}=\dfrac{5}{2}:\dfrac{\sqrt{5}}{2}=\sqrt{5}\)
Do (d) đi qua M, thay tọa độ M vào pt (d) ta được:
\(2=\left(m-1\right).1+m+2\Rightarrow m=\dfrac{1}{2}\)
Khi đó pt (d) có dạng: \(y=-\dfrac{1}{2}x+\dfrac{5}{2}\)
Gọi A và B lần lượt là giao điểm của (d) với Ox và Oy
\(y_A=0\Rightarrow-\dfrac{1}{2}x_A+\dfrac{5}{2}=0\Rightarrow x_A=5\Rightarrow OA=\left|x_A\right|=5\)
\(x_B=0\Rightarrow y_B=-\dfrac{1}{2}.0+\dfrac{5}{2}=\dfrac{5}{2}\Rightarrow OB=\left|y_B\right|=\dfrac{5}{2}\)
Gọi H là chân đường vuông góc hạ từ O xuống AB \(\Rightarrow OH\) là k/c từ O tới (d)
Áp dụng hệ thức lượng trong tam giác OAB vuông tại O:
\(\dfrac{1}{OH^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}=\dfrac{1}{5^2}+\dfrac{1}{\left(\dfrac{5}{2}\right)^2}=\dfrac{1}{5}\)
\(\Rightarrow OH^2=5\Rightarrow OH=\sqrt{5}\)
a: Thay x=1 và y=2 vào y=(m-1)x+4, ta được:
1(m-1)+4=2
=>m-1+4=2
=>m+3=2
=>m=-1
b:
(d): y=(m-1)x+4
=>(m-1)x-y+4=0
Khoảng cách từ O(0;0) đến (d) là:
\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\cdot\left(m-1\right)+0\cdot\left(-1\right)+4\right|}{\sqrt{\left(m-1\right)^2+1}}=\dfrac{4}{\sqrt{\left(m-1\right)^2+1}}\)
Để d(O;(d))=2 thì \(\dfrac{4}{\sqrt{\left(m-1\right)^2+1}}=2\)
=>\(\sqrt{\left(m-1\right)^2+1}=2\)
=>\(\left(m-1\right)^2+1=4\)
=>\(\left(m-1\right)^2=3\)
=>\(m-1=\pm\sqrt{3}\)
=>\(m=\pm\sqrt{3}+1\)
c: y=(m-1)x+4
=>\(\left(m-1\right)x-y+4=0\)
Khoảng cách từ O(0;0) đến (d) là:
\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\cdot\left(m-1\right)+0\cdot\left(-1\right)+4\right|}{\sqrt{\left(m-1\right)^2+\left(-1\right)^2}}=\dfrac{4}{\sqrt{\left(m-1\right)^2+1}}\)
Để \(d\left(O;\left(d\right)\right)=2\) thì \(\dfrac{4}{\sqrt{\left(m-1\right)^2+1}}=2\)
=>\(\sqrt{\left(m-1\right)^2+1}=2\)
=>\(\left(m-1\right)^2+1=4\)
=>\(\left(m-1\right)^2=3\)
=>\(m-1=\pm\sqrt{3}\)
=>\(m=\pm\sqrt{3}+1\)
Đặt: d: y = ( m+1 ) x + 3
+) TH1: m = -1
=> d: y = 3
=> Khoảng cách của gốc tọa độ tới d là: 3 (1)
+) Th2: m khác -1.
Giao điểm của d với Ox là : A ( \(-\frac{3}{m+1};0\))
=> \(OA=\left|\frac{3}{m+1}\right|\)
Giao điểm của d với Oy là: \(B\left(0;3\right)\)
=> OB = 3.
Kẻ OH vuông với d tại H => AH là khoảng cách từ O tới d
Xét tam giác OAB vuông tại O. Có OH là đường cao:
=> \(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}=\frac{\left(m+1\right)^2}{9}+\frac{1}{9}>\frac{1}{9}\)vì m khác 1 => \(\left(m+1\right)^2>0\)
=> \(OH< 3\)
=> Khoảng cách từ gốc tọa độ đến d nhỏ hơn 3 (2)
Từ (1); (2) Khoảng cách từ O đến d có giá trị lớn nhất là 3 đạt tại m = -1.
Thay x=1 và y=2 vào (d), ta được:
2m+1=2
hay \(m=\dfrac{1}{2}\)