Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(2n:\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+.....+\frac{1}{1+2+...+n}\right)=2020\)
<=> \(2n:\left(\frac{2}{2}+\frac{2}{3.2}+\frac{2}{4.3}+...+\frac{2}{\left(n+1\right).n}\right)=2020\)
<=> \(n:\left(1+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\right)=2020\)
<=> \(n:\left(1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}\right)=2020\)
<=> \(n:\left(1-\frac{1}{n+1}\right)=2020\)
<=> \(n:\frac{n}{n+1}=2020\)
<=> n + 1 = 2020
<=> n = 2019
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{n+1}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{n}{n+1}\)
\(=\frac{1}{n+1}\)
\(1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)...+\frac{1}{20}.\left(1+2+3+...+20\right)\)
\(=1+\frac{1}{2}.2.3:2+\frac{1}{3}.3.4:2+\frac{1}{4}.4.5:2+...+\frac{1}{20}.20.21:2\)
\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{21}{2}\)
\(=\frac{2+3+4+5+...+21}{2}=115\)
1.a.\(\left(1+\frac{2}{3}-\frac{1}{4}\right).\left(\frac{4}{5}-\frac{3}{4}\right)^2=\frac{17}{12}.\left(\frac{1}{20}\right)^2=\frac{17}{12}.\frac{1}{400}=\frac{17}{4800}\)
b. \(2\div\left(\frac{1}{2}-\frac{2}{3}\right)^3=2\div\left(-\frac{1}{6}\right)^3=2\div\left(-\frac{1}{216}\right)=2.\left(-216\right)=-432\)
2.a.\(\frac{16}{2^n}=2\Rightarrow2^n=16:2=8=2^3\Rightarrow n=3\)
b.\(\frac{\left(-3\right)^n}{81}=-27\Rightarrow\left(-3\right)^n=-27.81=-2187=\left(-3\right)^7\Rightarrow n=7\)
c. \(8^n:2^n=4\Rightarrow\left(8:2\right)^n=4\Rightarrow4^n=4^1\Rightarrow n=1\)
a) \(A=\left(-1\right)^{2n}.\left(-1\right)^n.\left(-1\right)^{n+1}=\left(-1\right)^{3n+1}\)
b) \(B=\left(10000-1^2\right)\left(10000-2^2\right).........\left(10000-1000^2\right)\)
\(=\left(10000-1^2\right)\left(10000-2^2\right)......\left(10000-100^2\right)....\left(10000-1000^2\right)\)
\(=\left(10000-1^2\right)\left(10000-2^2\right).....\left(10000-10000\right).....\left(10000-1000^2\right)=0\)
c) \(C=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)..........\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right).....\left(\frac{1}{125}-\frac{1}{5^3}\right)......\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)........\left(\frac{1}{125}-\frac{1}{125}\right).....\left(\frac{1}{125}-\frac{1}{25^3}\right)=0\)
d) \(D=1999^{\left(1000-1^3\right)\left(1000-2^3\right)........\left(1000-10^3\right)}\)
\(=1999^{\left(1000-1^3\right)\left(1000-2^3\right)........\left(1000-1000\right)}=1999^0=1\)