Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Để a là phân số thì
\(n+2\ne0\)\(\Leftrightarrow n\ne-2\)
b, Để \(A\in Z\)\(\Rightarrow5⋮n+2\)
Hay \(n+2\inƯ\left(5\right)\)
Ta có các \(Ư\left(5\right)\in\left\{1;-1;5;-5\right\}\)
Vậy có các trường hợp :
n + 2 = 1 => n = -1
n + 2 = -1 => n = -3
n + 2 = 5 => n = 3
n + 2 = -5 => n = -7
Vậy để \(A\in Z\Rightarrow n\in\left\{-1;-3;3;-7\right\}\)
Bg
Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1
Theo đề bài: M = \(\frac{n-1}{n-2}\) (n \(\in\)\(ℤ\); n \(\ne2\))
Gọi d = ƯCLN (n - 1; n - 2)
=> n - 1 - (n - 2) \(⋮\)d *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1
=> 1 \(⋮\)d
=> d \(\in\)Ư (1)
Ư (1) = {1}
=> d = 1
Mà ngay từ lúc đầu d phải bằng 1 rồi.
Vậy nên với mọi n \(\in\)Z và n \(\ne2\)thì M là phân số tối giản.
Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1
Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)
Gọi d = ƯCLN (n - 1; n - 2)
=> n - 1 - (n - 2) ⋮d *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1
=> 1 ⋮d
=> d = 1
Mà ngay từ lúc đầu d phải bằng 1 rồi.
Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.
Gọi d là ƯC(n+1 ; n+2)
=> n+1 chia hết cho d và n+2 chia hết cho d
=>(n+2)-(n+1) chia hết d
=> 1 chia hết d
=> D=1
Vậy n+1/n+2 là phân số tối giản
Để n+3/n-2 \(\in\) Z
=> n+3 chia hết n-2
=> n-2 + 5 chia hết n-2
=> 5 chia hết n-2
=> n-2 \(\in\) Ư(5)={-1;1;-5;5}
Ta có: