Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(n^3-2⋮n-2\)
=>\(n^3-8+6⋮n-2\)
=>\(6⋮n-2\)
=>\(n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
=>\(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)
b: \(n^3-3n^2-3n-1⋮n^2+n+1\)
=>\(n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)
=>\(3⋮n^2+n+1\)
=>\(n^2+n+1\in\left\{1;-1;3;-3\right\}\)
mà \(n^2+n+1=\left(n+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall n\)
nên \(n^2+n+1\in\left\{1;3\right\}\)
=>\(\left[{}\begin{matrix}n^2+n+1=1\\n^2+n+1=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n^2+n=0\\n^2+n-2=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}n\left(n+1\right)=0\\\left(n+2\right)\left(n-1\right)=0\end{matrix}\right.\Leftrightarrow n\in\left\{0;-1;-2;1\right\}\)
\(P=\dfrac{n^3+3n^2+2n}{6}+\dfrac{2n+1}{1-2n}\)
Vì n^3+3n^2+2n=n(n+1)(n+2) là tích của 3 số liên tiếp
nên n^3+3n^2+2n chia hết cho 3!=6
=>Để P nguyên thì 2n+1/1-2n nguyên
=>2n+1 chia hết cho 1-2n
=>2n+1 chia hết cho 2n-1
=>2n-1+2 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;2;-2\right\}\)
=>\(n\in\left\{1;0;\dfrac{3}{2};-\dfrac{1}{2}\right\}\)
a) Thay n=-2 vào phương trình, ta được:
\(\dfrac{x+2}{x-2}+\dfrac{x-2}{x+2}=\dfrac{-2\left(-2\cdot2+1\right)}{\left(-2\right)^2-x^2}\)
\(\Leftrightarrow\dfrac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}=\dfrac{-6}{\left(x-2\right)\left(x+2\right)}\)
Suy ra: \(x^2+4x+4+x^2-4x+4+6=0\)
\(\Leftrightarrow2x^2+14=0\)(Vô lý)
Vậy: Khi n=-2 thì phương trình vô nghiệm
`P=n^3-n^2+n-1`
`=n^2(n-1)+(n-1)`
`=(n-1)(n^2+1)`
Vì n là stn thì p là snt khi
`n-1=1=>n=2`
Vậy n=2
Bài 1:
Ta có: \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)
\(=2n^3+2n^2-2n^3-2n^2+6n\)
\(=6n⋮6\)
1) \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)=2n^3+2n^2-2n^3-2n^2+6n=6n⋮6\forall n\in Z\)
2) \(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1=3n-2n^2-4n^2+3n+1-1=-6n^2+6n=6\left(-n^2+n\right)⋮6\forall n\in Z\)
1:
2n^2+5n-1 chia hết cho 2n-1
=>2n^2-n+6n-3+2 chia hết cho 2n-1
=>2n-1 thuộc {1;-1;2;-2}
mà n nguyên
nên n=1 hoặc n=0
2:
a: A=n(n+1)(n+2)
Vì n;n+1;n+2 là 3 số liên tiếp
nên A=n(n+1)(n+2) chia hết cho 3!=6
b: B=(2n-1)[(2n-1)^2-1]
=(2n-1)(2n-2)*2n
=4n(n-1)(2n-1)
Vì n;n-1 là hai số nguyên liên tiếp
nên n(n-1) chia hết cho 2
=>B chia hết cho 8
c: C=n^2+14n+49-n^2+10n-25=24n+24=24(n+1) chia hết cho 24
Bài làm
a) Ta có: n3− 8n2 + 2n ⋮ ( n2 + 1 )
⇔ ( n3 + n ) − (8n2 + 8 ) + n + 8 ⋮ n2 + 1
⇔ n( n2 + 1 ) − 8( n2+1 ) + n + 8 ⋮ n2 + 1
⇒ n + 8 ⋮ n2 + 1⇒ ( n − 8 )( n + 8 ) ⋮ n2 + 1
⇔ ( n2 + 1 ) − 65 ⋮ n2 + 1
⇒ 65 ⋮ n2 + 1 mà dễ dàng nhận thấy n2 + 1 ≥ 1 nên n2 + 1 ϵ 1 ; 5 ; 13 ; 65 hay n2 ϵ 0 ; 4 ; 12 ; 64n2 ϵ 0 ; 4 ; 12 ; 64
⇒n ϵ − 8 ; −2 ; 0 ; 2 ; 8
Thay lần lượt các giá trị của x tìm được, ta nhận các giá trị x = −8 ; 0 ; 2x = −8 ; 0 ; 2
# Chúc bạn học tốt #