K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2021

Ta có: \(x^2+x=x^2y-xy+y\)

\(\Leftrightarrow x^2+x-x^2y+xy-y=0\)

\(\Leftrightarrow x^2\left(1-y\right)+x\left(1+y\right)-y=0\)

\(\Delta=\left(1+y\right)^2+4y\left(1-y\right)\)

\(=y^2+2y+1+4y-4y^2=-3y^2+6y+1\)

Để PT có nghiệm thì \(\Delta\ge0\Leftrightarrow-3y^2+6y+1\ge0\)

\(\Rightarrow\frac{3+2\sqrt{3}}{3}\ge y\ge\frac{3-2\sqrt{3}}{3}\Leftrightarrow2\ge x\ge0\)

Vì y nguyên nên ta xét các TH sau:

TH1: \(y=0\Rightarrow x^2+x=0\Leftrightarrow x\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}\left(tm\right)}\)

TH2: \(y=1\Rightarrow x^2+x=x^2-x+1\Leftrightarrow2x=1\Rightarrow x=\frac{1}{2}\left(ktm\right)\)

TH3: \(y=2\Rightarrow x^2+x=2x^2-2x+2\Leftrightarrow x^2-3x+2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)

Vậy ta có 4 cặp số (x;y) thỏa mãn ...

AH
Akai Haruma
Giáo viên
18 tháng 3 2021

Lời giải:

PT $\Leftrightarrow x^3+3x-5=x^2y+2y=y(x^2+2)$

$\Rightarrow y=\frac{x^3+3x-5}{x^2+2}$

Để $y$ nguyên thì $x^3+3x-5\vdots x^2+2$

$\Leftrightarrow x(x^2+2)+x-5\vdots x^2+2$

$\Leftrightarrow x-5\vdots x^2+2(1)$

$\Rightarrow x^2-5x\vdots x^2+2$

$\Leftrightarrow x^2+2-(5x+2)\vdots x^2+2$

$\Leftrightarrow 5x+2\vdots x^2+2(2)$

Từ $(1);(2)\Rightarrow 5(x-5)-(5x+2)\vdots x^2+2$

$\Leftrightarrow 27\vdots x^2+2$. Do $x^2+2\geq 2$ nên:

$\Rightarrow x^2+2\in\left\{3;9;27\right\}$

$\Rightarrow x^2\in\left\{1;7;25\right\}$

Do $x$ nguyên nên $x\in\left\{\pm 1; \pm 5\right\}$

Thay vào $y$ ta tìm được: 

$x=-1\Rightarrow y=-3$

$x=5\Rightarrow y=5$

AH
Akai Haruma
Giáo viên
17 tháng 2 2021

Lời giải:

$3^x.x^2=4y(y+1)$ nên $x$ chẵn. Đặt $x=2a$ ta có:

$3^{2a}.a^2=y(y+1)\Leftrightarrow (3^a.a)^2=y(y+1)$

Dễ thấy $(y,y+1)=1$ nên để tích của chúng là scp thì $y,y+1$ là scp.

Đặt $y=m^2; y+1=n^2$ với $m,n$ tự nhiên.

$\Rightarrow 1=(n-m)(n+m)$

$\Rightarrow n=1; m=0\Rightarrow y=0\Rightarrow x=0$

4 tháng 5 2016

\(\Leftrightarrow\left(x+1\right)\left(y+1\right)=-1\). rồi xét TH.

5 tháng 5 2016

làm chi rồi xét TH vậy bạn

21 tháng 3 2018

4(x+y)=11+xy  <=> 4x+4y=11+xy

<=> xy-4y=4x-11  <=> y(x-4)=4x-11

=> \(y=\frac{4x-11}{x-4}=\frac{4x-16+5}{x-4}=\frac{4\left(x-4\right)+5}{x-4}\)=> \(y=4+\frac{5}{x-4}\)

Để y nguyên => x-4=(-5,-1,1,5)

x-4  -5  -1  1  5
x  -1   3  5  9
y   3  -1  9  5

Các cặp (x,y) thỏa mãn là (-1,3); (3,-1); (5,9); (9,5)

21 tháng 3 2018

b/ x3-2x-4=0

<=> x3-4x+2x-4=0

<=> x(x2-4)+2(x-2)=0

<=> x(x-2)(x+2)+2(x-2)=0

<=> (x-2)(x2+2x+2)=0

Nhận thấy, x2+2x+2=x2+2x+1+1 = (x+1)2+1 > 0 với mọi x

=> Phương trình có nghiệm duy nhất là: x-2=0 <=> x=2

Đáp số: x=2