Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử a > b > c > d
Khi đó ta có số tự nhiên lớn nhất là \(\overline{abcd}\) và số tự nhiên nhỏ nhất là \(\overline{dcba}\)
=> \(\overline{abcd}+\overline{dcba}=11330\)
=> Ta có : \(a+d=10;b+c=12\)
Vậy \(a+b+c+d=10+12=22\)
Bài 4:
Gọi số tự nhiên cần là abc3 :
Khi đó nếu bỏ chữ số tận cùng thì số mới là abc
Ta có:
abc3 - abc = (1000a + 100b + 10c + 3) - (100a + 10b + c)
=> 900a + 90b + 9c + 3=1992
=> 900a + 90b + 9c=1989
=> 9(100a + 10b + c)=1989
=> 100a + 10b + c = 221
=> abc = 221
=> abc3 = 2213
Bài 1:
Gọi số cần tìm là ab thì theo giả thiết, ta có: ab+a+b=65 <=> 11a+2b=65 => a\(\le\)5 và a lẻ (do 2b chẵn, 65 lẻ) => a\(\in\)(1;3;5) rồi giải ra tìm b.
Bài 2:
(chưa biết)
Gọi số phải tìm là \(\overline{ab}\)\((0< a,b< 10;a,b\in N)\)
Theo bài ra ta có :
\(\overline{ab}+a+b=65\)
\(\Rightarrow10a+b+a+b=65\)
\(\Rightarrow11a+2b=65\)
Vì 2b là số chẵn
\(\Rightarrow\)11a là số lẻ
Mà 11a<65\(\Rightarrow a\in\left(1;3;5\right)\)
Thử lại:a=5\(\Rightarrow b=5\)
Vậy số phải tìm là 55
1,Tìm các số tự nhiên chia cho 4 dư 1 , còn chia cho 25 thì dư 3.2, Tìm số tự nhiên có 5 chữ số biết rằng số đó bằng 45 lần tổng các chữ số của nó.3,Tìm chữ số abcd ( có gạch trên đầu ) biết rằng số đó chia hết cho tích của ab và cd (có gạch trên đầu ).4, Tìm chữ số * biết : *63* (có gạch trên đầu ) chia hết cho 2,3,5,9.5,Tìm tất cả các số có 5 chữ số có dạng 34x5y ( có gạch trên... Đọc tiếp
1,Tìm các số tự nhiên chia cho 4 dư 1 , còn chia cho 25 thì dư 3.
2, Tìm số tự nhiên có 5 chữ số biết rằng số đó bằng 45 lần tổng các chữ số của nó.
3,Tìm chữ số abcd ( có gạch trên đầu ) biết rằng số đó chia hết cho tích của ab và cd (có gạch trên đầu ).
4, Tìm chữ số * biết : *63* (có gạch trên đầu ) chia hết cho 2,3,5,9.
5,Tìm tất cả các số có 5 chữ số có dạng 34x5y ( có gạch trên đầu ) mà chia hết cho 36.
34x5y chia hết cho 36 khi 34x5y chia hết cho 4 và 9
*) 34x5y chia hết cho 4 khi 5y chia hết cho 4
khi đó y = 2 hoặc y = 6.
*) 34x5y chia hết cho 9 khi 3+4+x+5+y = 12+x+y chia hết cho 9
Với y=2 ta có 12+x+2=14+x chia hết cho 9 khi x = 4
ta có số 34452 chia hết cho 36.
Với y=6 ta có 12+x+6=18+x chia hết cho 9 khi x = 9
ta có số 34956 chia hết cho 36.
Kết luận: có hai số chia hết cho 36 là 34452 và 34956
Đây là dạng toán nâng cao chuyên đề lập số theo điều kiện cho trước, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:
Giải:
+ Số có 5 chữ số có dạng: \(\overline{abcde}\) vì số đó chia hết cho 5 nên e = 0; 5
+ Vì số đó có chữ số hàng chục nghìn và chữ số hàng đơn vị như nhau nên chữ số hàng chục nghìn là: 5 vì số không không thể đứng đầu. Vậy số đó có dạng:
\(\overline{5bcd5}\)
+ Tổng các chữ số của số đó là: 5 + b + c + d + 5
Theo bài ra ta có: 5 + 5 + b + c + d = 10
⇒ b + c + d = 10 - 5 - 5
⇒ b + c + d = 5 - 5
⇒ b + c + d = 0 mà 0 ≤ b; c; d
⇒ b = c = d = 0
+ Thay b = c = d = 0 vào \(\overline{5bcd5}\) ta được: \(\overline{5bcd5}\) = 50005
Vậy số thỏa mãn đề bài là: 50005