K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
16 tháng 12 2023

Lời giải:
$2n+3\vdots 3n+2$

$\Rightarrow 3(2n+3)\vdots 3n+2$

$\Rightarrow 6n+9\vdots 3n+2$

$\Rightarrow 2(3n+2)+5\vdots 3n+2$

$\Rightarrow 5\vdots 3n+2$
$\Rightarrow 3n+2\in \left\{1; -1; 5; -5\right\}$

$\Rightarrow n\in \left\{\frac{-1}{3}; -1; 1; \frac{-7}{3}\right\}$

Do $n$ nguyên nên $n\in \left\{-1;1\right\}$

31 tháng 12 2023

Ta có : 2n + 3 ⋮ 3n + 2 => 3(2n + 3) = 6n + 9 ⋮ 3n + 2

            3n + 2 ⋮ 3n + 2 => 2(3n + 2) = 6n + 4 ⋮ 3n + 2

=> (6n + 9) - (6n + 4) ⋮ 3n + 2

=> 5 ⋮ 3n + 2

=> 3n + 2 ∈ Ư(5) ∈ {-5;-1;1;5}

 Mặt khác : (3n + 2) - 2 ⋮ 3

=> 3n + 2 = -1;5

=> n = -1;1

31 tháng 12 2023

(2n + 3) ⋮ (3n + 2)

⇒ 3.(2n + 3) ⋮ (3n + 2)

⇒ (6n + 9) ⋮ (3n + 2)

⇒ [(6n + 4) + 5] ⋮ (3n + 2)

⇒ [2(3n + 2) + 5] ⋮ (3n + 2)

⇒ 5 ⋮ (3n + 2)

⇒ 3n + 2 ∈ Ư(5) = {-5; -1; 1; 5}

⇒ 3n ∈ {-7; -3; -1; 3}

⇒ n ∈ {-7/3; -1; -1/3; 1}

Mà n là số nguyên

⇒ n ∈ {-1; 1}

AH
Akai Haruma
Giáo viên
28 tháng 12 2023

Lời giải:
$2n+3\vdots 3n+2$

$\Rightarrow 3(2n+3)\vdots 3n+2$

$\Rightarrow 6n+9\vdots 3n+2$
$\Rightarrow 2(3n+2)+5\vdots 3n+2$

$\Rightarrow 5\vdots 3n+2$
$\Rightarrow 3n+2\in \left\{1; -1; 5; -5\right\}$

$\Rightarrow n\in \left\{\frac{-1}{3}; -1; 1; \frac{-7}{3}\right\}$

Do $n$ nguyên nên $n\in \left\{-1;1\right\}$

Thử lại thấy thỏa mãn.

a: n=3-5=-2

b: =>-3n-2n=1-2

=>-5n=-1

=>n=1/5(loại)

AH
Akai Haruma
Giáo viên
26 tháng 12 2022

Lời giải:
a.

$3n-1\vdots n-2$

$\Rightarrow 3(n-2)+5\vdots n-2$

$\Rightarrow 5\vdots n-2$
$\Rightarrow n-2\in\left\{1; -1;5;-5\right\}$

$\Rightarrow n\in\left\{3; 1; 7; -3\right\}$
b.

$3n+1\vdots 2n-1$

$\Rightarrow 2(3n+1)\vdots 2n-1$

$\Rightarrow 6n+2\vdots 2n-1$

$\Rightarrow 3(2n-1)+5\vdots 2n-1$
$\Rightarrow 5\vdots 2n-1$

$\Rightarrow 2n-1\in\left\{1; -1; 5; -5\right\}$

$\Rightarrow n\in\left\{1; 0; 3; -2\right\}$

26 tháng 12 2022

a) (3n -1) chia hết (n-2)

⇒3(n-2)+5 chia hết (n-2)

⇒ 5 chia hết (n-2) vì 3(n-2) chia hết (n-2)

⇒(n-2) ϵ Ư(5)

Vậy n-2 =1 hoặc n-2 = -1 hoặc n-2 =5 hoặc n-2 = -5

Vậy n = 3 hoặc n=1 hoặc n=7 hoặc n= -3

b) (3n+1) chia hết (2n-1)

⇒(2n -1 +n +2) chia hết (2n-1)

⇒ (n+2) chia hết (2n-1)

⇒(2n +4) chia hết (2n-1)

⇒(2n -1 +5) chia hết (2n-1)

⇒ 5 chia hết (2n-1)

⇒(2n-1) ϵ Ư (5)

Vậy n = {-1; 0; 3; -2}

 

 

Bài 1: Gọi d=ƯCLN(3n+11;3n+2)

=>\(\left\{{}\begin{matrix}3n+11⋮d\\3n+2⋮d\end{matrix}\right.\)

=>\(3n+11-3n-2⋮d\)

=>\(9⋮d\)

=>\(d\in\left\{1;3;9\right\}\)

mà 3n+2 không chia hết cho 3

nên d=1

=>3n+11 và 3n+2 là hai số nguyên tố cùng nhau

Bài 2:

a:Sửa đề: \(n+15⋮n-6\)

=>\(n-6+21⋮n-6\)

=>\(n-6\in\left\{1;-1;3;-3;7;-7;21;-21\right\}\)

=>\(n\in\left\{7;5;9;3;13;3;27;-15\right\}\)

mà n>=0

nên \(n\in\left\{7;5;9;3;13;3;27\right\}\)

b: \(2n+15⋮2n+3\)

=>\(2n+3+12⋮2n+3\)

=>\(12⋮2n+3\)

=>\(2n+3\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)

=>\(n\in\left\{-1;-2;-\dfrac{1}{2};-\dfrac{5}{2};0;-3;\dfrac{1}{2};-\dfrac{7}{2};\dfrac{3}{2};-\dfrac{9}{12};\dfrac{9}{2};-\dfrac{15}{2}\right\}\)

mà n là số tự nhiên

nên n=0

c: \(6n+9⋮2n+1\)

=>\(6n+3+6⋮2n+1\)

=>\(2n+1\inƯ\left(6\right)\)

=>\(2n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

=>\(n\in\left\{0;-1;\dfrac{1}{2};-\dfrac{3}{2};1;-2;\dfrac{5}{2};-\dfrac{7}{2}\right\}\)

mà n là số tự nhiên

nên \(n\in\left\{0;1\right\}\)

AH
Akai Haruma
Giáo viên
5 tháng 1

Lời giải:

$3n+7\vdots 2n+3$

$\Rightarrow 2(3n+7)\vdots 2n+3$

$\Rightarrow 6n+14\vdots 2n+3$

$\Rightarrow 3(2n+3)+5\vdots 2n+3$

$\Rightarrow 5\vdots 2n+3$
$\Rightarrow 2n+3\in \left\{1; -1; 5; -5\right\}$

$\Rightarrow n\in \left\{-1; -2; 1; -4\right\}$