K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2020

\(\left(x+2\right)^2-6\left(y-1\right)^2+xy=24\Leftrightarrow x^2+4x-6y^2+12y+xy=26\)

\(\Leftrightarrow\left(x^2-2xy+4x\right)+\left(3xy-6y^2+12y\right)=26\Leftrightarrow x\left(x-2y+4\right)+3y\left(x-2x+4\right)=26\)

\(\Leftrightarrow\left(x-2y+4\right)\left(x+3y\right)=26\)

Vì x,y nguyên dương nên có các TH sau:

\(\hept{\begin{cases}x+3y=1\\x-2y+4=26\end{cases}\Leftrightarrow\hept{\begin{cases}x+3y=1\\x-2y=22\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{68}{5}\\y=\frac{-21}{5}\end{cases}\left(loai\right)}}\)

\(\hept{\begin{cases}x+3y=26\\x-2y+4=1\end{cases}\Leftrightarrow\hept{\begin{cases}x+3y=26\\x-2y=-3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{43}{5}\\y=\frac{29}{5}\end{cases}\left(loai\right)}}\)

\(\hept{\begin{cases}x+3y=2\\x-2y+4=13\end{cases}\Leftrightarrow\hept{\begin{cases}x+3y=2\\x-2y=9\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{31}{5}\\y=\frac{-7}{5}\end{cases}\left(loai\right)}}\)

\(\hept{\begin{cases}x+3y=13\\x-2y+4=2\end{cases}\Leftrightarrow\hept{\begin{cases}x+3y=13\\x-2y=-2\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=3\end{cases}\left(chon\right)}}}\)

Vậy (x;y)=(4,3)

18 tháng 8 2023

\(2x^2+\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\)

\(\Leftrightarrow x^2+\dfrac{1}{x^2}+x^2+\dfrac{y^2}{4}=4\left(1\right)\)

Theo Bất đẳng thức Cauchy cho các cặp số \(\left(x^2;\dfrac{1}{x^2}\right);\left(x^2;\dfrac{y^2}{4}\right)\)

\(\left\{{}\begin{matrix}x^2+\dfrac{1}{x^2}\ge2\\x^2+\dfrac{y^2}{4}\ge2.\dfrac{1}{2}xy\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2+\dfrac{1}{x^2}\ge2\\x^2+\dfrac{y^2}{4}\ge xy\end{matrix}\right.\)

Từ \(\left(1\right)\Leftrightarrow x^2+\dfrac{1}{x^2}+x^2+\dfrac{y^2}{4}\ge2+xy\)

\(\Leftrightarrow4\ge2+xy\)

\(\Leftrightarrow xy\le2\left(x;y\inℤ\right)\)

\(\Leftrightarrow Max\left(xy\right)=2\)

Dấu "=" xảy ra khi

\(xy\in\left\{-1;1;-2;2\right\}\)

\(\Leftrightarrow\left(x;y\right)\in\left\{\left(-1;-2\right);\left(1;2\right);\left(-2;-1\right);\left(2;1\right)\right\}\) thỏa mãn đề bài

17 tháng 9 2023

hình như dấu "=" xảy ra khi x^2 = 1/x^2 với x^2 = y^2/4 mà bạn nhỉ

10 tháng 12 2021

Tham khảo:

Nhưng có vẻ không đúng yêu cầu đề lắm :<

undefined

undefined

undefined

10 tháng 12 2021

\(\left(x^2-y^2\right)^2=4xy+1\)

<=> \(\left(x^2+y^2\right)^2=4x^2y^2+4xy+1\)

<=> \(\left(x^2+y^2\right)^2=\left(2xy+1\right)^2\)

<=> \(x^2+y^2=2xy+1\)

<=> \(\left(x-y\right)^2=1\)

<=> \(\left[{}\begin{matrix}x=y+1\\x=y-1\end{matrix}\right.\) mà x,y là SNT <=> \(\left[{}\begin{matrix}\left(x;y\right)=\left(3;2\right)\\\left(x;y\right)=\left(2;3\right)\end{matrix}\right.\)

2 tháng 10 2020

\(pt=\left(x^3-4x^2+4x\right)+\left(y^3-4y^2+4y\right)+\left(8x^2+8y^2-16xy\right)=0\)

\(\Leftrightarrow x\left(x-2\right)^2+y\left(y-2\right)^2+8\left(x-y\right)^2=0\left(1\right)\)

Do \(x\left(x-2\right)^2\ge0,y\left(y-2\right)^2\ge0,8\left(x-y\right)^2\ge0\left(2\right)\)

Từ (1) và (2) =>x=y=2

7 tháng 1 2022

thi cấp tỉnh mà với có 1 số bài thi vào chuyên đại học với cấp 3 nữa

Bài 2: Ta có:

\(\left(2x+5y+1\right)\left(2020^{\left|x\right|}+y+x^2+x\right)=105\) là số lẻ

\(\Rightarrow\left\{{}\begin{matrix}2x+5y+1\\2020^{\left|x\right|}+y+x^2+x\end{matrix}\right.\) đều lẻ

\(\Rightarrow y⋮2\)\(\Rightarrow2020^{\left|x\right|}⋮̸2\Leftrightarrow\left|x\right|=0\Leftrightarrow x=0\).

Thay vào tìm được y...