Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1. Do a, b là 2 số nguyên khác nhau. Không làm mất tính tổng quát, giả sử a>b.
Khi đó a-b > 0 và b-a < 0. Suy ra (a-b)(b-a) < 0 (Tích của một số nguyên dương với một số nguyên âm là một số nguyên âm).
Bài 2. Để xy(x+y) = -20102011 => x, y thuộc Z.
- Xét x, y khác tính chẵn lẻ => xy luôn chẵn => xy(x+y) chẵn. Mà -20102011 lẻ => không tồn tại x,y thỏa mãn đề bài.
- Xét x, y cùng tính chẵn lẻ:
+ Nếu x, y cùng chẵn xy(x+y) luôn chẵn. Mà -20102011 lẻ => không tồn tại x,y thỏa mãn đề bài.
+ Nếu x, y cùng lẻ thì x+y chẵn => xy(x+y) chẵn. Mà -20102011 lẻ => không tồn tại x,y thỏa mãn đề bài.
Vậy không tồn tại x, y thuộc Z thỏa mãn điều kiện đề bài.
Bài 3. Do a, b thuộc N. Ta có:
- Xét a, b khác tính chẵn lẻ => ab luôn chẵn => ab(a+b) chẵn => ab(a+b) luôn chia hết cho 2.
- Xét a, b khác tính chẵn lẻ:
+ Nếu a, b cùng chẵn thì ab(a+b) chẵn => ab(a+b) luôn chia hết cho 2.
+ Nếu a, b cùng lẻ => a+b chẵn => ab(a+b) chẵn => ab(a+b) luôn chia hết cho 2.
Vậy với a, b thuộc N thì ab(a+b) luôn chia hết cho 2.
2) ta có xy(x+y)=-20102011
=>x2y+xy2=-20102011
=>(x+y)(x2+y2)=-20102011
=>x3+xy2+yx2+y3=-20102011
=>x,y tồn tại
Lời giải:
Ta thấy: $xy-y+x=6$
$\Rightarrow y(x-1)+(x-1)=5$
$\Rightarrow (y+1)(x-1)=5$
Do $x,y$ nguyên nên $y+1, x-1$ nguyên. Khi đó ta có bảng sau:
\(xy\left(x+y\right)=-20102011\text{ là số lẻ}\Rightarrow x;y;x+y\text{ đều là số lẻ}\)
\(x+y\text{ lẻ nên 1 trong 2 số là số chẵn số còn lại là lẻ}\Rightarrow\text{vô lí}\)
\(\Rightarrow\text{vô nghiệm với x;y nguyên}\)