Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 :
Gọi số học sinh của trường đó là a
Điều kiện : \(a\in N\text{*}\text{ };\text{ }a>400\)
Theo đề ra , ta có : \(a-3\text{ }⋮\text{ }10\text{ };\text{ }12\text{ };\text{ }15\Rightarrow a-3\in BC\left(10\text{ };\text{ }12\text{ };\text{ }15\right)\)
Ta có :
\(BCNN\left(10\text{ };\text{ }12\text{ };\text{ }15\right)=60\Rightarrow BC\left(10\text{ };\text{ }12\text{ };\text{ }15\right)=B\left(60\right)\)
\(=>a-3\in{ 0 ; 60 ; 120 ; 180 ; 240 ; 300 ; 360 ; ... } \) nhưng n chia hết cho 11 nên a = 363
Vậy số học sinh của trường đó là 363
4/ Gọi số HS là a (a thuộc N, 300 < a < 400)
Theo bài, xếp thành 12, 15, 18 hàng đều dư ra 9 HS hay a : 12, 15, 18 dư 9 => (a - 9) chia hết cho 12, 15, 18 => a - 9 là BC(12,15,18)
12 = 2 mũ 2 x 3 ; 15 = 3 x 5 ; 18 = 2 x 3 mũ 2
Thừa số nguyên tố chung và riêng: 2, 3, 5
BCNN(12,15,18) = 2 mũ 2 x 3 mũ 2 x 5 = 180
=> BC(12,15,18) = B(180) = { 0, 180, 360, 540, 720, ... }
=> a - 9 thuộc { 0, 180, 360, 540, 720, ... }
Mà 300 < a < 400 => a - 9 = 360
a = 360 + 9
a = 369
Câu 4:
Gọi số HS là a (a thuộc N, 300 < a < 400)
Theo bài, xếp thành 12, 15, 18 hàng đều dư ra 9 HS
hay a : 12, 15, 18 dư 9 => (a - 9) chia hết cho 12, 15, 18 => a - 9 là BC(12,15,18)
12 = 2 mũ 2 x 3 ; 15 = 3 x 5 ; 18 = 2 x 3 mũ 2
Thừa số nguyên tố chung và riêng: 2, 3, 5
BCNN(12,15,18) = 2 mũ 2 x 3 mũ 2 x 5 = 180
=> BC(12,15,18) = B(180) = { 0, 180, 360, 540, 720, ... }
=> a - 9 thuộc { 0, 180, 360, 540, 720, ... }
Mà 300 < a < 400 => a - 9 = 360
a = 360 + 9
a = 369
7n + 10 5n + 7
<=> 5(7n + 10) <=> 7(5n + 7)
<=> 35n + 50 <=> 35n + 49
Ta thấy 35n + 50 và 35n là hai số liền nhau
Mà hai số liền nhau luôn có ƯCLN là 1 => 7n + 10 và 5n + 7 nguyên tố cùng nhau
(b) Gọi số cần tìm là a (a\(\varepsilon\)N* )và 100\(\le\)a \(\le\) 999
Theo đầu bài ta có:
a=8.m+5=11.n+6\(\Rightarrow\) 8.m=11.n+6-5=11.n+1 =8.n+(3.n+1) (m,n \(\varepsilon\) N*)
Vì 100\(\le\) a \(\le\) 999 \(\Rightarrow\) m>11; n>8
\(\Rightarrow\)3.n+1 \(⋮\) 8
\(\Rightarrow\)n=13
Vậy a =149
Bài 1:
Giả sử số đó là: a
a chia 11 dư 2 => a - 2 chia hết cho 11 => a - 2 + 33 chia hết cho 11 => a + 31 chia hết cho 11
a chia 12 dư 5 => a - 5 chia hết cho 12 => a - 5 + 36 chia hết cho 12 => a + 31 chia hết cho 12
mà (11;12) = 1
suy ra: a + 31 chia hết cho 132
hay a chia 132 dư 101
Bài 1:
Giả sử số đó là: a
a chia 11 dư 2 => a - 2 chia hết cho 11 => a - 2 + 33 chia hết cho 11 => a + 31 chia hết cho 11
a chia 12 dư 5 => a - 5 chia hết cho 12 => a - 5 + 36 chia hết cho 12 => a + 31 chia hết cho 12
mà (11;12) = 1
suy ra: a + 31 chia hết cho 132
hay a chia 132 dư 101
a: Gọi số cần tìm là x
Vi x chia hết cho cả 8;12;16 nên \(x\in BC\left(8;12;16\right)\)
=>\(x\in B\left(48\right)\)
=>\(x\in\left\{48;96;144;192;...\right\}\)
mà 100<x<140
nên \(x\in\varnothing\)
b: Gọi số cần tìm là x
\(12=2^2\cdot3;18=2\cdot3^2;21=3\cdot7\)
=>\(BCNN\left(12;18;21\right)=2^2\cdot3^2\cdot7=252\)
Vì x chia 12;18;21 đều dư 5 nên \(x-5\in BC\left(12;18;21\right)\)
=>\(x-5\in B\left(252\right)\)
=>\(x-5\in\left\{0;252;504;756;1008;...\right\}\)
=>\(x\in\left\{5;257;509;761;1013;...\right\}\)
mà số đó xấp xỉ 1000
nên x=1013
c: Gọi số học sinh khối 6 là x(bạn)
(Điều kiện: \(x\in Z^+\))
Vì số học sinh khi xếp hàng 11 thì không dư nên \(x\in B\left(11\right)\)(2)
Vì số học sinh xếp hàng 10;12;15 đều dư 3 bạn nên \(x-3\in BC\left(10;12;15\right)\)
=>\(x-3\in B\left(60\right)\)
=>\(x-3\in\left\{60;120;180;240;300;360;420;...\right\}\)
=>\(x\in\left\{63;123;183;243;303;363;423;...\right\}\)
mà 0<x<400
nên \(x\in\left\{63;123;183;243;303;363\right\}\left(1\right)\)
Từ (1),(2) suy ra x=363(nhận)
Vậy: Số học sinh khối 6 là 363 bạn
a) Gọi số cần tìm là: a (a ϵ N*; 100 < a < 140)
Ta có:
8 = 23
12 = 22.3
16 = 24
BCNN (8; 12; 16) = 24.3 = 48
a ϵ BC(8; 12; 16) ϵ B(48) ϵ {0; 48; 96; 144; ...}
⇒ Không có số tự nhiên thoả mãn đề bài
b) Gọi số cần tìm là a (a ϵ N; a \(\approx\) 1000)
Do chia cho 12; 18; 21 đều dư 5
⇒ (a - 5) ⋮ 12
⇒ (a - 5) ⋮ 18
⇒ (a - 5) ⋮ 21
Ta có:
12 = 22.3
18 = 2.32
21 = 3.7
BCNN(12; 18; 21) = 22.32.7 = 252
a ϵ BC(12; 18; 21) ϵ B(252) ϵ {0;252; 504; 756; 1008; ...}
Trong các số trong tập hợp B(252); 1008 là số gần với 1000 nhất
⇒ a = 1008 + 5 = 1023
c) Gọi số cần tìm là a (a ϵ N; a< 400}
Ta có:
(a - 3) ⋮ 10
(a - 3) ⋮ 12
(a - 3) ⋮ 15
a ⋮ 11
Ta có:
10 = 2.5
12 = 22.3
15 = 3.5
BCNN(10; 12; 15) = 22.3.5 = 60
(a - 3) ϵ B(60) ϵ {0; 60; 120; 180; 240; 300; 360; 420; ...}
⇒ a ϵ {3; 63; 123; 183; 243; 303; 363; 423; ...}
Do 363 < 40 và ⋮ cho 11 nên a = 363