K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Gọi số cần tìm là x

Vi x chia hết cho cả 8;12;16 nên \(x\in BC\left(8;12;16\right)\)

=>\(x\in B\left(48\right)\)

=>\(x\in\left\{48;96;144;192;...\right\}\)

mà 100<x<140

nên \(x\in\varnothing\)

b: Gọi số cần tìm là x

\(12=2^2\cdot3;18=2\cdot3^2;21=3\cdot7\)

=>\(BCNN\left(12;18;21\right)=2^2\cdot3^2\cdot7=252\)

Vì x chia 12;18;21 đều dư 5 nên \(x-5\in BC\left(12;18;21\right)\)

=>\(x-5\in B\left(252\right)\)

=>\(x-5\in\left\{0;252;504;756;1008;...\right\}\)

=>\(x\in\left\{5;257;509;761;1013;...\right\}\)

mà số đó xấp xỉ 1000

nên x=1013

c: Gọi số học sinh khối 6 là x(bạn)

(Điều kiện: \(x\in Z^+\))

Vì số học sinh khi xếp hàng 11 thì không dư nên \(x\in B\left(11\right)\)(2)

Vì số học sinh xếp hàng 10;12;15 đều dư 3 bạn nên \(x-3\in BC\left(10;12;15\right)\)

=>\(x-3\in B\left(60\right)\)

=>\(x-3\in\left\{60;120;180;240;300;360;420;...\right\}\)

=>\(x\in\left\{63;123;183;243;303;363;423;...\right\}\)

mà 0<x<400

nên \(x\in\left\{63;123;183;243;303;363\right\}\left(1\right)\)

Từ (1),(2) suy ra x=363(nhận)

Vậy: Số học sinh khối 6 là 363 bạn

27 tháng 8

a) Gọi số cần tìm là: a (a ϵ N*; 100 < a < 140)

Ta có:

8 = 23

12 = 22.3

16 = 24

BCNN (8; 12; 16) = 24.3 = 48

a ϵ BC(8; 12; 16) ϵ B(48) ϵ {0; 48; 96; 144; ...}

⇒ Không có số tự nhiên thoả mãn đề bài

b) Gọi số cần tìm là a (a ϵ N; a \(\approx\) 1000)

Do chia cho 12; 18; 21 đều dư 5

⇒ (a - 5) ⋮ 12

⇒ (a - 5) ⋮ 18

⇒ (a - 5) ⋮ 21

Ta có:

12 = 22.3

18 = 2.32

21 = 3.7

BCNN(12; 18; 21) = 22.32.7 = 252

a ϵ BC(12; 18; 21) ϵ B(252) ϵ {0;252; 504; 756; 1008; ...}

Trong các số trong tập hợp B(252); 1008 là số gần với 1000 nhất

⇒ a = 1008 + 5 = 1023

c) Gọi số cần tìm là a (a ϵ N; a< 400}

Ta có:

(a - 3) ⋮ 10

(a - 3) ⋮ 12

(a - 3) ⋮ 15

a ⋮ 11

Ta có:

10 = 2.5

12 = 22.3

15 = 3.5

BCNN(10; 12; 15) = 22.3.5 = 60

(a - 3) ϵ B(60) ϵ {0; 60; 120; 180; 240; 300; 360; 420; ...}

⇒ a ϵ {3; 63; 123; 183; 243; 303; 363; 423; ...}

Do 363 < 40 và ⋮ cho 11 nên a = 363

Bài 2 : 

Gọi số học sinh của trường đó là a 

Điều kiện : \(a\in N\text{*}\text{ };\text{ }a>400\)

Theo đề ra , ta có : \(a-3\text{ }⋮\text{ }10\text{ };\text{ }12\text{ };\text{ }15\Rightarrow a-3\in BC\left(10\text{ };\text{ }12\text{ };\text{ }15\right)\)

Ta có :  

\(BCNN\left(10\text{ };\text{ }12\text{ };\text{ }15\right)=60\Rightarrow BC\left(10\text{ };\text{ }12\text{ };\text{ }15\right)=B\left(60\right)\)

\(=>a-3\in{ 0 ; 60 ; 120 ; 180 ; 240 ; 300 ; 360 ; ... } \) nhưng n chia hết cho 11 nên a = 363 

Vậy số học sinh của trường đó là 363 

11 tháng 11 2017

cho mình nhé

10 tháng 8 2018

4/ Gọi số HS là a (a thuộc N, 300 < a < 400)

Theo bài, xếp thành 12, 15, 18 hàng đều dư ra 9 HS  hay   a : 12, 15, 18 dư 9    => (a - 9) chia hết cho 12, 15, 18  => a - 9 là BC(12,15,18)

12 = 2 mũ 2 x 3             ;                 15 = 3 x 5             ;                        18 = 2 x 3 mũ 2

Thừa số nguyên tố chung và riêng: 2, 3, 5

BCNN(12,15,18) = 2 mũ 2 x 3 mũ 2 x 5 = 180

=> BC(12,15,18) = B(180) = { 0, 180, 360, 540, 720, ... }

=> a - 9 thuộc { 0, 180, 360, 540, 720, ... }

Mà 300 < a < 400   => a - 9 = 360

                                      a = 360 + 9

                                      a = 369

4 tháng 12 2017

Câu 4:

 Gọi số HS là a (a thuộc N, 300 < a < 400)

Theo bài, xếp thành 12, 15, 18 hàng đều dư ra 9 HS

        hay   a : 12, 15, 18 dư 9    => (a - 9) chia hết cho 12, 15, 18  => a - 9 là BC(12,15,18)

12 = 2 mũ 2 x 3             ;                 15 = 3 x 5             ;                        18 = 2 x 3 mũ 2

Thừa số nguyên tố chung và riêng: 2, 3, 5

BCNN(12,15,18) = 2 mũ 2 x 3 mũ 2 x 5 = 180

=> BC(12,15,18) = B(180) = { 0, 180, 360, 540, 720, ... }

=> a - 9 thuộc { 0, 180, 360, 540, 720, ... }

Mà 300 < a < 400   => a - 9 = 360

                                      a = 360 + 9

                                      a = 369

4 tháng 12 2017

       7n + 10                                                                                                     5n + 7

<=> 5(7n + 10)                                                                                           <=> 7(5n + 7)

<=> 35n + 50                                                                                             <=> 35n + 49

Ta thấy 35n + 50 và 35n là hai số liền nhau

Mà hai số liền nhau luôn có ƯCLN là 1    => 7n + 10 và 5n + 7 nguyên tố cùng nhau

7 tháng 7 2017

(b) Gọi số cần tìm là a (a\(\varepsilon\)N* )và 100\(\le\)\(\le\) 999

Theo đầu bài ta có:

a=8.m+5=11.n+6\(\Rightarrow\) 8.m=11.n+6-5=11.n+1 =8.n+(3.n+1) (m,n \(\varepsilon\) N*) 

Vì 100\(\le\) a \(\le\) 999 \(\Rightarrow\) m>11; n>8

\(\Rightarrow\)3.n+1 \(⋮\) 8

\(\Rightarrow\)n=13

Vậy a =149

18 tháng 12 2015

351 em

tick cho tớ nha

 

Các bạn làm giúp mình với nha ! Mình đang cần rất vội.BT1: Một số tự nhiên chia 11 dư 2, chia 12 dư 5. Hỏi số đó chia 132 dư bao nhiêu ?BT2: Tìm số tự nhiên nhỏ nhất choa 3, 4, 5, 10 dư lần lượt là: 2,3,4,9.BT3: Bạn An nghĩ một số có 3 chúc số. Nếu bớt số đó đi 8 thì được số chia hết cho 7, nếu bớt số đó đi 9 thì được số chia hết cho 8, nếu bớt số đó đi 10 thì được số chia hết cho...
Đọc tiếp

Các bạn làm giúp mình với nha ! Mình đang cần rất vội.

BT1: Một số tự nhiên chia 11 dư 2, chia 12 dư 5. Hỏi số đó chia 132 dư bao nhiêu ?

BT2: Tìm số tự nhiên nhỏ nhất choa 3, 4, 5, 10 dư lần lượt là: 2,3,4,9.

BT3: Bạn An nghĩ một số có 3 chúc số. Nếu bớt số đó đi 8 thì được số chia hết cho 7, nếu bớt số đó đi 9 thì được số chia hết cho 8, nếu bớt số đó đi 10 thì được số chia hết cho 9. Hỏi bạn An nghĩ số nào ?

BT4: Một trường có số học sinh xếp hàng 13,17 lần lượt dư 4,9. Xếp hàng 5 thì vừa hết. Tìm số học sinh biết số học sinh vào khoảng 2500 đến 3000.

BT5: Số tự nhiên chia 3 dư 1, chia 4 dư 2, chia 5 dư 3, chia 6 dư 4 và chia hết cho 11.

a) Tìm số nhỏ nhất thỏa mãn tính chất trên.

b) Tìm dạng chung của các số có tính chất trên.

BT6: Số học sinh của 1 trường là 1 số có 3 chữ số lớn hơn 900. Mỗi lần xếp hàng 3,4,5 đều vừa đủ. Hỏi trường đó có bao nhiêu học sinh ?

3
13 tháng 1 2019

Bài 1:

Giả sử số đó là:  a

a chia 11 dư 2  =>  a - 2 chia hết cho 11 => a - 2 + 33 chia hết cho 11 => a + 31 chia hết cho 11

a chia 12 dư 5 => a - 5 chia hết cho 12 => a - 5 + 36 chia hết cho 12 => a + 31 chia hết cho 12

mà (11;12) = 1

suy ra: a + 31 chia hết cho 132

hay a chia 132 dư 101

Bài 1:

Giả sử số đó là:  a

a chia 11 dư 2  =>  a - 2 chia hết cho 11 => a - 2 + 33 chia hết cho 11 => a + 31 chia hết cho 11

a chia 12 dư 5 => a - 5 chia hết cho 12 => a - 5 + 36 chia hết cho 12 => a + 31 chia hết cho 12

mà (11;12) = 1

suy ra: a + 31 chia hết cho 132

hay a chia 132 dư 101

Bài 1: Tìm số tự nhiên nhỏ nhất khi chia cho 6, 7, 9 được số dư theo thứ tự 2, 3,5.Bài 2: Số học sinh khối 6 của một trường trong khoảng từ 200 và 400, khi xếp hàng 12, 15, 18 đều thừa 5 học sinh. Tính số học sinh đó.Bài 3: Tổng số học sinh khối 6 của một trường có khoảng từ 235 đến 250 em học sinh, khi chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4, chia cho 6 dư 5, chia cho 10 dư 9. Tìm số học...
Đọc tiếp

Bài 1: Tìm số tự nhiên nhỏ nhất khi chia cho 6, 7, 9 được số dư theo thứ tự 2, 3,5.

Bài 2: Số học sinh khối 6 của một trường trong khoảng từ 200 và 400, khi xếp hàng 12, 15, 18 đều thừa 5 học sinh. Tính số học sinh đó.

Bài 3: Tổng số học sinh khối 6 của một trường có khoảng từ 235 đến 250 em học sinh, khi chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4, chia cho 6 dư 5, chia cho 10 dư 9. Tìm số học sinh của khối 6.

Bài 4: Một số tự nhiên chia cho 7 thì dư 5, chia cho 13 thì dư 4. Nếu đem số đó chia cho 91 thì dư bao nhiêu?

Bài 5: Một số tự nhiên a khi chia cho 7 dư 4, chia cho 9 dư 6. Tìm số dư khi chia a cho 63.

Bài 6: Tìm số tự nhiên n lớn nhất có ba chữ số, sao cho n chia cho 15 và 35 có số dư lần lượt là 9 và 29.

Bài 7: Tìm số tự nhiên nhỏ nhất có ba chữ số chia cho 18; 30; 45 có số dư lần lượt là 8; 20; 35.

0