K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2018

60X+48=Y2

  • X=0 . THAY X=0 VÀO BIỂU THỨC TRÊN TA ĐC 600+48=Y2\(\Rightarrow\)49=Y2\(\Rightarrow\)Y\(\in\)(7;-7) MÀ Y\(\inℕ\)\(\Rightarrow\)Y=7(TM)
  • X>0 \(\Rightarrow\)60LUÔN CÓ TẬN CÙNG LÀ 0 \(\Rightarrow\)60X+48 LUÔN CÓ TẬN CÙNG LÀ 8 .

MÀ 60X+48=Y\(\Rightarrow\)Y2 LUÔN CÓ TẬN CÙNG LÀ 8 (VÔ LÍ VÌ SỐ CHÍNH PHƯƠNG KO CÓ TẬN CÙNG LÀ 8) \(\Rightarrow\)X>0 (KTM)

VẬY X=0 VÀ Y=7

18 tháng 12 2023

Điều kiện đã cho \(\Leftrightarrow7\left(x-2019\right)^2+y^2=23\) (*)

Do \(\left(x-2019\right)^2,y^2\ge0\) nên (*) suy ra \(y^2\le23\Leftrightarrow y^2\in\left\{0,1,4,9,16\right\}\)

\(\Leftrightarrow y\in\left\{0,1,2,3,4\right\}\)

Hơn nữa, lại có \(y^2=23-7\left(x-2019\right)^2\). Ta thấy \(VP\) chia 7 dư 2.

\(\Rightarrow y^2\) chia 7 dư 2 \(\Rightarrow y\in\left\{3,4\right\}\)

Xét \(y=3\) \(\Rightarrow7\left(x-2019\right)^2=14\) \(\Leftrightarrow\left(x-2019\right)^2=2\), vô lí.

Xét \(y=4\Rightarrow7\left(x-2019\right)^2=7\) \(\Leftrightarrow\left(x-2019\right)^2=1\) \(\Leftrightarrow\left[{}\begin{matrix}x=2020\\x=2018\end{matrix}\right.\)

Vậy \(\left(x,y\right)\in\left\{\left(4;2020\right),\left(4;2018\right)\right\}\) thỏa mãn ycbt.

16 tháng 2 2019

Với \(x>0\Rightarrow60^x=6^x\cdot10^x\)tận cùng bằng 0, do đó \(60^x+48\)tận cùng bằng 8. Điều này vô lí vì \(60^x+48=y^2\)là SCP nên không thể tận cùng bằng 2,3,7,8.

Với \(x=0\), ta có \(y^2=49\Leftrightarrow y=7\)(y là STN nên y>0)

Vậy \(x=0;y=7\)

22 tháng 12 2022

Dùng phương pháp chặn :

\(\le\) y \(\le\) z \(\Rightarrow\) x2 \(\le\) y2 \(\le\) z2 \(\Rightarrow\) x2 + y2 + z2 \(\le\) 3z2 

\(\Rightarrow\) 3z2 \(\ge\) 34 \(\Leftrightarrow\) z2 \(\ge\) 34/3  (1)

x2 + y2 + z2  = 34 mà x,y,z \(\in\) N \(\Rightarrow\) z2 \(\le\) 34 (2)

Kết hợp (1) và (2) ta có : 

34/3  \(\le\) z2 \(\le\)  34 

\(\Rightarrow\) z2 \(\in\) { 16; 25}

vì z \(\in\) N\(\Rightarrow\) z \(\in\) { 4; 5}

th1 Z = 4 ta có :

x2 + y2 + 16 = 34

x2 + y2 = 12 

\(\le\) y \(\Rightarrow\) x2 \(\le\)y2 \(\Rightarrow\) x2 + y2 \(\le\) 2y2 \(\Rightarrow\) 12 \(\le\)2y2 \(\Rightarrow\) y2 \(\ge\) 6 (*)

x2 + y2 = 12 \(\Rightarrow\) y2 \(\le\) 12 (**)

Kết hợp (*) và (**) ta có :

\(\le\) y2 \(\le\) 12 \(\Rightarrow\) y2 = 9 vì y \(\in\) N\(\Rightarrow\) y = 3

với y = 3 ta có : x2 + 32 = 12 \(\Rightarrow\) x2 = 12-9 = 3 \(\Rightarrow\) x = +- \(\sqrt{3}\)(loại vì x \(\in\) N)

th2 : z = 5 ta có :

x2 + y2 + 25 = 34

\(\Rightarrow\) x2 + y2 = 34 - 25  = 9

\(\le\) y \(\Rightarrow\) x2 \(\le\) y2 \(\Rightarrow\) x2 + y2 \(\le\)2y2 \(\Rightarrow\) 2y2 \(\ge\) 9 \(\Rightarrow\) y2 \(\ge\) 9/2 (a)

x2 + y2 = 9 \(\Rightarrow\) y2 \(\le\) 9 (b)

Kết hợp (a) và (b) ta có :

9/2 \(\le\) y2 \(\le\) 9 \(\Rightarrow\) y2 = 9 vì y \(\in\) N \(\Rightarrow\) y = 3

với y = 3 \(\Rightarrow\) x2 + 32 = 9 \(\Rightarrow\) x2 = 0 \(\Rightarrow\) x = 0

kết luận (x; y; z) =( 0; 3; 5) là nghiệm duy nhất thỏa mãn pt 

 

16 tháng 2 2018

20 tháng 1 2022

- Bạn học toán chuyên hay sao vậy mà sao đăng câu hỏi khó quá :)?

17 tháng 2 2022

Uạ sao bói như thần vậy

x(y+2)=8

mà x,y là các số tự nhiên

nên (x,y+2) thuộc {(4;2); (2;4); (1;8)}

=>(x,y) thuộc {(4;0); (2;2); (1;6)}

Bn nào bảo ko sai đề làm hộ mik vs ạ !