K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7

\(x^2+5xy+6y^2+x+2y-2=0\)

\(\Leftrightarrow x^2+2xy+3xy+6y^2+x+2y=2\)

\(\Leftrightarrow x\left(x+2y\right)+3y\left(x+2y\right)+\left(x+2y\right)=2\)

\(\Leftrightarrow\left(x+2y\right)\left(x+3y+1\right)=2\)

Ta xét các TH sau:

TH1: \(\left\{{}\begin{matrix}x+2y=1\\x+3y+1=2\end{matrix}\right.\Leftrightarrow\left(x;y\right)=\left(1;0\right)\)

TH2: \(\left\{{}\begin{matrix}x+2y=2\\x+3y+1=1\end{matrix}\right.\Leftrightarrow\left(x;y\right)=\left(6;-2\right)\)

TH3: \(\left\{{}\begin{matrix}x+2y=-1\\x+3y+1=-2\end{matrix}\right.\Leftrightarrow\left(x;y\right)=\left(3;-2\right)\)

TH4: \(\left\{{}\begin{matrix}x+2y=-2\\x+3y+1=-1\end{matrix}\right.\Leftrightarrow\left(x;y\right)=\left(-2;0\right)\)

Vậy có 4 cặp số (x; y) thỏa mãn đề bài là \(\left(1;0\right),\left(6;-2\right),\left(3;-2\right),\left(-2;0\right)\)

NV
13 tháng 2 2022

- Với \(y=0\Rightarrow x^2+x=3^0+1=2\)

\(\Rightarrow x^2+x-2=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

- Với \(y< 0\Rightarrow3^{2019y}\) không phải số nguyên \(\Rightarrow3^{2019y}+1\) không phải số nguyên (loại)

- Với \(y>0\Rightarrow3^{2019y}⋮3\Rightarrow3^{2019y}+1\) chia 3 dư 1

Mà \(x^2+x=x\left(x+1\right)\) là tích 2 số nguyên liên tiếp nên chia 3 chỉ có thể dư 0 hoặc 2

\(\Rightarrow x^2+x\ne3^{2019y}+1\) với mọi \(y>0\) \(\Rightarrow\) phương trình ko có nghiệm nguyên

Vậy pt đã cho có đúng 2 cặp nghiệm nguyên là \(\left(x;y\right)=\left(-2;0\right);\left(1;0\right)\)

21 tháng 10 2023

tại sao y<0 lại ko thuoc Z

25 tháng 3 2017

12.1=12

25 tháng 3 2017

\(x^2-2y^2=1\)

\(\Leftrightarrow x^2=2y^2+1\)

Vì \(x^2\)là số chính phương lẻ

\(\Rightarrow x^2=2y^2+1⋮1\left(mod4\right)\)mà theo đề ra y là số nguyên tố

\(\Rightarrow y=2;x=3\)

2 tháng 7

\(\dfrac{1}{2}\)y hay \(\dfrac{1}{2y}\) thế em ơi???

18 tháng 3 2023

\(x^2-3xy+2=y\)

\(\Rightarrow x^2+2=y\left(3x+1\right)\left(1\right)\)

\(\Rightarrow\left(x^2+2\right)⋮\left(3x+1\right)\)

\(\Rightarrow\left(9x^2+18\right)⋮\left(3x+1\right)\)

\(\Rightarrow\left[\left(9x^2-1\right)+19\right]⋮\left(3x+1\right)\)

Ta có \(9x^2-1=\left(3x+1\right)\left(3x-1\right)⋮\left(3x+1\right)\)

\(\Rightarrow19⋮\left(3x+1\right)\) nên \(3x+1\inƯ\left(19\right)\)

Lập bảng:

3x+1191-19-1
x60\(\dfrac{-20}{3}\left(l\right)\)\(\dfrac{-2}{3}\left(l\right)\)

Với \(x=6\). (1) \(\Rightarrow y=\dfrac{x^2+2}{3x+1}=\dfrac{6^2+2}{3.6+1}=2\)

Với \(x=0\). (1) \(\Rightarrow y=\dfrac{x^2+2}{3x+1}=\dfrac{0^2+2}{3.0+1}=2\)

Vậy các cặp số (x;y) thỏa điều kiện ở đề bài là \(\left(6;2\right),\left(0;2\right)\)

 

31 tháng 12 2015

xy+3x-2y=11

<=>xy+3x-2y-6=5

<=>x(y+3)-2(y+3)=5

<=>(x-2)(y+3)=5

Lập bảng,tìm đc 4 cặp (x;y) thỏa mãn

31 tháng 12 2015

xy + 3x - 2y = 11

xy + 3x - 2y + 6 = 11 + 6

x(y + 3) - 2(y + 3) = 17

(x  - 2)(y + 3) = 17

(x - 2)(y + 3) = -17.(-1) = (-1).(-17) = 1.17 = 17.1

Vì -2 ; 3 là các số nguyên

Vậy có 4 cặp (x;y) thõa mãn

 

Theo đề bài, ta có: \(x+2xy-y=4\)

\(\Rightarrow x\left(1+2y\right)-y=4\)

\(\Rightarrow2x\left(2y+1\right)-2y=8\)

\(\Rightarrow2x\left(2y+1\right)-\left(2y+1\right)=7\)

\(\Rightarrow\left(2y+1\right)\left(2x-1\right)=7\)

Vì \(x,y\in Z\Rightarrow2x-1;2y+1\inƯ\left(7\right)=\left\{\mp1;\mp7\right\}\)

Ta có bảng sau:

2x-11-17-7
2y+17-71-1
x104-3
y3-40-1

Vậy \(\left(x;y\right)\in\left\{\left(1;3\right),\left(0;-4\right),\left(4;0\right),\left(-3;-1\right)\right\}\)

25 tháng 2 2020

\(x+2xy-y=4\)

\(\Rightarrow2x+2xy-2y=4\)

\(\Rightarrow2x+2y\left(x-1\right)=4\)

\(\Rightarrow2\left[x+y\left(x-1\right)\right]=4\)

\(\Rightarrow x+y\left(x-1\right)=2\)

\(\Rightarrow\left(x-1\right)+y\left(x-1\right)=1\)

\(\Rightarrow\left(x-1\right).\left(1+y\right)=1\)

26 tháng 8 2021

\(8\left|x-2017\right|=25-y^{2\text{​​}}\)

\(\Leftrightarrow8\left|x-2017\right|+y^2=25=25+0=24+1=21+4=16+9\)

Mà \(8\left|x-2017\right|\) chẵn nên ta có các trường hợp sau:

TH1: \(\left\{{}\begin{matrix}8\left|x-2017\right|=0\\y^2=25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2017\\y=\pm5\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}8\left|x-2017\right|=24\\y^2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=2020\\x=2014\end{matrix}\right.\\y=\pm5\end{matrix}\right.\)

TH3: \(\left\{{}\begin{matrix}8\left|x-2017\right|=16\\y^2=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=2019\\x=2015\end{matrix}\right.\\y=\pm3\end{matrix}\right.\)

18 tháng 4 2015

Biến đổi bt tương đương : (x^2-1) / 2 = y^2 
Ta có: vì x,y là số nguyên dương nên 
+) x > y và x phải là số lẽ. 
Từ đó đặt x = 2k + 1 (k nguyên dương); 
Biểu thức tương đương 2 * k * ( k + 1 ) = y ^ 2 (*); 
Để ý rằng: 
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là : 
{1,y, y^2} ; 
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1; 
=>x=3. 
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).

18 tháng 4 2015

Biến đổi bt tương đương : (x^2-1) / 2 = y^2 
Ta có: vì x,y là số nguyên dương nên 
+) x > y và x phải là số lẽ. 
Từ đó đặt x = 2k + 1 (k nguyên dương); 
Biểu thức tương đương 2 * k * ( k + 1 ) = y ^ 2 (*); 
Để ý rằng: 
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là : 
{1,y, y^2} ; 
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1; 
=>x=3. 
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).

Nhớ like cho mình nha ^^

11 tháng 11 2015

=>x.(y-2)+3x=11

=>x.(y-2+3)=11

=>x.(y+1)=11

Mà 11=1.11 = 11.1 = (-1).(-11)=(-11).(-1)

Ta có bảng sau:

x1-111-11
y+111-111-1
y10-120-2

Vậy có  4 cặp(x;y) thỏa mãn

 

23 tháng 12 2015

xy-3x+2y=11

xy-3x+2y=5+6

xy-3x+2y-6=5

<2y+2y>-<3x+6>=5

y<x+2>-3<x+2>=5

<x+2>.<x-3>thuộc ư<5>

ư<5>={1;5}

Vì x+2 lớn hơn hoặc bằng 2

suy ra ta có x+2=5 suy ra x=5-2=3

                  y-3=1 suy ra y =1+3=4

Vậy ta có 1 cặp số nguyên <x;y> là x=3

                                                     y=4

****