Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2^x=16=2^4\Rightarrow x=4\)
b) \(x^3=27=3^3\Rightarrow x=3\)
c) \(x^{50}=x\Rightarrow x\left(x^{49}-1\right)=0\Rightarrow x=0\) hay \(x=1\)
d) \(\left(x-2\right)^2=16=4^2\Rightarrow x-2=4\) hay \(x-2=-4\)
\(\Rightarrow x=6\) hay \(x=-2\)
a) \(2^{300}=2^{3.100}=8^{100}\)
\(3^{200}=3^{2.100}=9^{100}\)
vì \(8^{100}< 9^{100}\)
\(\Rightarrow2^{300}< 3^{200}\)
b) \(3^{500}=3^{5.100}=243^{100}\)
\(7^{300}=7^{3.100}=343^{100}\)
vì \(243^{100}< 343^{100}\)
\(\Rightarrow3^{500}< 7^{300}\)
a,(2x+1)(y-3)=12
⇒⇒2x+1 và y-3 ∈∈Ư(12)={±1;±2;±3;±4;±6;±12}{±1;±2;±3;±4;±6;±12}
2x+1 | 1 | -1 | 2 | -2 | 3 | -3 |
y-3 | 12 | -12 | 6 | -6 | 4 | -4 |
x | 0 | -1 | 1212 | −32−32 | 1 | -2 |
y | 15 | -9 | 9 | 3 | 7 | -1 |
=>x=0,y=15
c) Ta có: \(36^{25}=\left(6^2\right)^{25}=6^{50}\)
\(25^{36}=\left(5^2\right)^{36}=5^{72}\)
Ta có: \(6^{50}=\left(6^5\right)^{10}=7776^{10}\)
mà \(5^{70}=\left(5^7\right)^{10}=78125^{10}\)
nên \(6^{50}< 5^{70}\)
mà \(5^{70}< 5^{72}\)
nên \(6^{50}< 5^{72}\)
hay \(36^{25}< 25^{36}\)
a/
Với $x,y$ là số tự nhiên $2x+1, y-3$ là số nguyên. Mà $(2x+1)(y-3)=12$ nên $2x+1$ là ước của 12.
$2x+1>0, 2x+1$ lẻ nên $2x+1\in \left\{1;3\right\}$
Nếu $2x+1=1\Rightarrow y-3=12$
$\Rightarrow x=0; y=15$
Nếu $2x+1=3\Rightarrow y-3=4$
$\Rightarrow x=1; y=7$
Vậy...........
b/
$2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}=2^{2019}-8$
$2^x(1+2+2^2+2^3+...+2^{2015})=2^{2019}-8(1)$
$2^x(2+2^2+2^3+2^4+...+2^{2016})=2^{2020}-16(2)$ (nhân 2 vế với 2)
Lấy (2) trừ (1) theo vế thì:
$2^x(2^{2016}-1)=2^{2020}-2^{2019}-8$
$2^x(2^{2016}-1)=2^{2019}(2-1)-8=2^{2019}-8$
$2^x(2^{2016}-1)=2^3(2^{2016}-1)$
$\Rightarrow 2^x=2^3$
$\Rightarrow x=3$
a)
Ta có : A = 275 = (33)5 = 315
B = 2433 = (35)3 = 315
Vì 315 = 315 => A = B
b )
Ta có : A = 2300 = (23)100 = 8100
B = 3200 = (32)100 = 9100
Vì 8100 < 9100 => A<B
1. Tính :
\(\left(1+3+5+7+...+2017\right)\cdot\left(135135\cdot137-135\cdot137137\right)\)
= (1 + 3 + 5 + 7 + ... + 2017) . (135.1001.137 - 135.137.1001)
= (1 + 3 + 5 + 7 + ... + 2017).0 = 0
2. Tìm x:
a) 2x + 3x = 1505 => 5x = 1505 => x = 301
b) 1 + 3 + 5 + ... + x = 3200 (sửa lại cái đề đây nhé)
Số số hạng là : (x - 1) : 2 + 1 = \(\frac{x+1}{2}\)
Tổng : \(\left(1+x\right)\cdot\frac{x+1}{2}=\frac{\left(x+1\right)\left(x+1\right)}{2}=\frac{\left(x+1\right)^2}{2}\)
=> \(\frac{\left(x+1\right)^2}{2}=3200\)
=> \(\left(x+1\right)^2=6400\)
=> \(\left(x+1\right)^2=\left(\pm80\right)^2\)
=> \(\orbr{\begin{cases}x+1=80\\x+1=-80\end{cases}}\Rightarrow\orbr{\begin{cases}x=79\\x=-81\end{cases}}\)
x = -81 loại vì x thuộc số tự nhiên => x = 79
c) (x + 1) + (x + 2) + (x + 3) + ... + (x + 100) = 5750
=> x + 1 + x + 2 + x + 3 + ... + x + 100 = 5750
=> (x + x +... +x) + (1 + 2 + 3 + ... +100) = 5750
Số số hạng : (100 - 1) : 1 + 1 = 100(số)
Tổng : (1 + 100).100 : 2 = 5050
=> 100x + 5050 = 5750
=> 100x = 700
=> x = 7
3. a)
A = 123.123
B = 121.124 = (123 - 2)(123 + 1) = 1232 - 12 = 123.123 - 1
=> A > B
b) C = 123.137137 = 123.1001.137
D = 137.123123 = 137.1001.123
=> C = D
c) E = 2015.2017 = 2015.(2016 + 1) = 2015.2016 + 2015 (1)
F = 2016.2016 = (2015 + 1).2016 = 2015.2016 + 2016(2)
Từ (1) và (2) => E < F (vì 2015 < 2016)
2,
a,Vì (2x+1) (3y-2)=12
\(\Rightarrow\left(2x+1;3y-2\right)\inƯ\left(12\right)=\left\{-1;1;-2;2;-3;3;-4;4;-6;6;-12;12\right\}\)
Lập bảng tự tính tiếp nhé............
Vậy ta lập được các cặp (x;y)là :(Tự tìm)
b,Làm tương tự a.
Nhớ nhấn đúng nha!