Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, (\(\dfrac{9}{10}\) - \(\dfrac{15}{16}\)) \(\times\) ( \(\dfrac{5}{12}\) - \(\dfrac{11}{15}\) - \(\dfrac{7}{20}\))
= (\(\dfrac{72}{80}\) - \(\dfrac{75}{80}\)) \(\times\) (\(\)\(\dfrac{25}{60}\) - \(\dfrac{44}{60}\) - \(\dfrac{21}{60}\))
= - \(\dfrac{3}{80}\) \(\times\) (- \(\dfrac{2}{3}\))
= \(\dfrac{1}{40}\)
b, (-1)3 + (- \(\dfrac{2}{3}\))2 : 2\(\dfrac{2}{3}\) + \(\dfrac{5}{6}\)
= -13 + \(\dfrac{4}{9}\) : \(\dfrac{8}{3}\) + \(\dfrac{5}{6}\)
= -1 + \(\dfrac{4}{9}\) \(\times\) \(\dfrac{3}{8}\) + \(\dfrac{5}{6}\)
= -1 + \(\dfrac{1}{6}\) + \(\dfrac{5}{6}\)
= -1 + 1
= 0
a) \(x+\left|x-2\right|=7\)
\(\Leftrightarrow\left|x-2\right|=7-x\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=7-x\\x-2=-7+x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=9\\0x=-5\left(loại\right)\end{matrix}\right.\) \(\Leftrightarrow x=\dfrac{9}{2}\)
b) \(\left|x-3\right|+\left|x-5\right|=9\left(1\right)\)
Ta thấy :
\(\left|x-3\right|+\left|x-5\right|\ge\left|x-3+x-5\right|=\left|2x-8\right|\)
\(pt\left(1\right)\Leftrightarrow\left|2x-8\right|=9\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-8=9\\2x-8=-9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=17\\2x=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{17}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
c) \(\left|x-1\right|+\left|x+1\right|=10\left(1\right)\)
Ta thấy :
\(\left|x-1\right|+\left|x+1\right|\ge\left|x-1+x+1\right|=\left|2x\right|\)
\(pt\left(1\right)\Leftrightarrow\left|2x\right|=10\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=10\\2x=-10\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)
a) \(x+\left|x-2\right|=7\)
\(\Rightarrow\left\{{}\begin{matrix}x+\left(x-2\right)=7\left(x\ge2\right)\\x-\left(x-2\right)=7\left(x< 2\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+x-2=7\\x-x+2=7\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x-2=7\\2=7\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x=9\\x\in\varnothing\end{matrix}\right.\)
\(\Rightarrow2x=-9\)
\(\Rightarrow x=-\dfrac{9}{2}\)
a.-1,75-(-\(\dfrac{1}{9}\)-2\(\dfrac{1}{8}\))
-1,75-\(\dfrac{1}{9}+\dfrac{17}{8}\)
\(-\dfrac{7}{4}-\dfrac{1}{9}+\dfrac{17}{8}\)
\(\dfrac{-126}{72}-\dfrac{8}{72}+\dfrac{153}{72}\)
=\(\dfrac{19}{72}\)
b.\(\dfrac{-1}{12}-\left(2\dfrac{5}{8}-\dfrac{1}{3}\right)\)
\(\dfrac{-1}{12}-\left(\dfrac{21}{8}-\dfrac{1}{3}\right)\)
\(\dfrac{-1}{12}-\dfrac{21}{8}+\dfrac{1}{3}\)
\(\dfrac{-2}{24}-\dfrac{63}{24}+\dfrac{64}{24}\)
=\(\dfrac{-1}{24}\)
\(/x-\frac{1}{2}/=\frac{1}{3}\\ =>\orbr{\begin{cases}x-\frac{1}{2}=\frac{1}{3}\\x-\frac{1}{2}=-\frac{1}{3}\end{cases}}\\ =>\orbr{\begin{cases}x=\frac{1}{3}+\frac{1}{2}\\x=-\frac{1}{3}+\frac{1}{2}\end{cases}}\\ =>\orbr{\begin{cases}x=\frac{5}{6}\\x=\frac{1}{6}\end{cases}}\)
\(a,|x-\frac{1}{2}|=\frac{1}{3}\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{2}=\frac{1}{3}\\x-\frac{1}{2}=-\frac{1}{3}\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{5}{6}\\x=\frac{1}{6}\end{cases}}}\)
\(b,\frac{14}{15}:\frac{9}{10}=x:\frac{3}{7}\)
\(\frac{28}{27}=x:\frac{3}{7}\)
\(x=\frac{4}{9}\)
a, 2x-3-x+5=x+2-x+1
2x-x-x+x=2+1+3-5
0x=1
=> x thuộc rỗng (vì số nào nhân với 0 cũng bằng 0)
b, 2x-2-5x+10=-10
2x-5x=-10+2-10
-3x=2
x=-2/3
c, 2x-10-3x+21=14
2x-3x=14+10-21
-x=3
x=-3
d, 5x-6-2x+6=12
5x-2x=12+6-6
3x=12
x=4
e, -35+7x-2x+10=15
7x-2x=15+35-10
5x=40
x=8
a) \(\frac{14}{15}:\frac{9}{10}=x:\frac{3}{7}\Rightarrow\frac{28}{27}=x:\frac{3}{7}\Rightarrow x=\frac{4}{9}\)
b) \(\left(x-\frac{4}{7}\right)^3=343\Rightarrow\left(x-\frac{4}{7}\right)^3=7^3\Rightarrow x-\frac{4}{7}=7\Rightarrow x=\frac{53}{7}\)
c) \(x^5=x^3\Leftrightarrow\hept{\begin{cases}x=1\\x=0\end{cases}}\)
e) \(\left(x-1\right)^4=16\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^4=2^4\\\left(x-1\right)^4=\left(-2\right)^4\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x-1=2\\x-1=\left(-2\right)\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)
x=15 và x=-9 bạn nhé