K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2017

\(\dfrac{x+1}{2}+\dfrac{x+1}{3}+\dfrac{x+1}{4}=\dfrac{x+1}{5}+\dfrac{x+1}{6}\)

\(\Leftrightarrow\dfrac{x+1}{2}+\dfrac{x+1}{3}+\dfrac{x+1}{4}-\dfrac{x+1}{5}-\dfrac{x+1}{6}=0\)

\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}-\dfrac{1}{6}\right)=0\)

\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}-\dfrac{1}{6}\ne0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

Vậy ..

2 tháng 11 2017

\(\dfrac{x+1}{2}+\dfrac{x+1}{3}+\dfrac{x+1}{4}=\dfrac{x+1}{5}+\dfrac{x+1}{6}\)

=> \(\dfrac{x+1}{2}+\dfrac{x+1}{3}+\dfrac{x+1}{4}-\dfrac{x+1}{5}-\dfrac{x+1}{6}\)= 0

(x + 1).(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}-\dfrac{1}{6}\)) = 0

Ta thấy \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}-\dfrac{1}{6}\) > 0

=> x + 1 = 0

x = 0 - 1

x = -1

25 tháng 8 2023

a) \(\dfrac{x-4}{15}=\dfrac{5}{3}\)

\(\Leftrightarrow x-4=15.\dfrac{5}{3}\)

\(\Leftrightarrow x-4=25\)

\(\Leftrightarrow x=29\) thỏa \(x\inℤ\)

b) \(\dfrac{x}{4}=\dfrac{18}{x+1}\left(x\ne-1\right)\)

\(\Leftrightarrow x\left(x+1\right)=18.4\)

\(\Leftrightarrow x\left(x+1\right)=72\)

vì \(72=8.9=\left(-8\right).\left(-9\right)\)

\(\Leftrightarrow x\in\left\{8;-9\right\}\left(x\inℤ\right)\)

c) \(2x+3⋮x+4\) \(\left(x\ne-4;x\inℤ\right)\)

\(\Leftrightarrow2x+3-2\left(x+4\right)⋮x+4\)

\(\Leftrightarrow2x+3-2x-8⋮x+4\)

\(\Leftrightarrow-5⋮x+4\)

\(\Leftrightarrow x+4\in\left\{-1;1;-5;5\right\}\)

\(\Leftrightarrow x\in\left\{-5;-3;-9;1\right\}\)

23 tháng 9 2023

a, -4\(\dfrac{3}{5}\).2\(\dfrac{4}{3}\) < \(x\) < -2\(\dfrac{3}{5}\): 1\(\dfrac{6}{15}\)

  - \(\dfrac{23}{5}\).\(\dfrac{10}{3}\) <   \(x\)   < - \(\dfrac{13}{5}\)\(\dfrac{21}{15}\)

   -  \(\dfrac{46}{3}\)     <  \(x\) < - \(\dfrac{13}{7}\) 

          \(x\) \(\in\) {-15; -14;-13;..; -2}

 

 

 

 

23 tháng 9 2023

a) Ta có \(-4\dfrac{3}{5}\cdot2\dfrac{4}{3}=-\dfrac{23}{5}\cdot\dfrac{10}{3}=-\dfrac{46}{3}\) và \(-2\dfrac{3}{5}\div1\dfrac{6}{15}=-\dfrac{13}{5}\div\dfrac{7}{5}=-\dfrac{13}{7}\)

Do đó \(-\dfrac{46}{3}< x< -\dfrac{13}{7}\)

Lại có \(-\dfrac{46}{3}\le-15\) và \(-\dfrac{13}{7}\ge-2\)

Suy ra \(-15\le x\le-2\), x ϵ Z

b) Ta có \(-4\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{6}\right)=-\dfrac{13}{3}\cdot\dfrac{1}{3}=-\dfrac{13}{9}\) và \(-\dfrac{2}{3}\left(\dfrac{1}{3}-\dfrac{1}{2}-\dfrac{3}{4}\right)=-\dfrac{2}{3}\cdot\dfrac{-11}{12}=\dfrac{11}{18}\)

Do đó \(-\dfrac{13}{9}< x< \dfrac{11}{18}\)

Lại có \(-\dfrac{13}{9}\le-1\) và \(\dfrac{11}{18}\ge0\)

Suy ra \(-1\le x\le0\), x ϵ Z

18 tháng 7 2023

giúp mình giải bài toán trên với. Mình cảm ơn rất nhiều

a: =>1/2x-3/4x=-5/6+7/3

=>-1/4x=14/6-5/6=3/2

=>x=-3/2*4=-6

b: =>4/5x-3/2x=1/2+6/5

=>-7/10x=17/10

=>x=-17/7

c: =>6/5x+6/20=6/5-1/3x

=>6/5x+1/3x=6/5-3/10=12/10-3/10=9/10

=>x=27/46

d: =>6x+3/2+4/5=1/2-2x

=>8x=1/2-3/2-4/5=-1-4/5=-9/5

=>x=-9/40

\(\Leftrightarrow\left(\dfrac{13}{4}-x\right)\cdot\dfrac{101}{25}-\dfrac{1213}{100}=2\cdot\left[\left(x-\dfrac{10}{7}\right)\cdot\dfrac{49}{50}+\dfrac{2}{5}\right]\)

\(\Leftrightarrow\left(\dfrac{13}{4}-x\right)\cdot\dfrac{101}{25}=\dfrac{49}{25}\left(x-\dfrac{10}{7}\right)+\dfrac{4}{5}+\dfrac{1213}{100}\)

\(\Leftrightarrow\dfrac{1313}{100}-\dfrac{101}{25}x=\dfrac{49}{25}x-\dfrac{490}{175}+\dfrac{1293}{100}\)

=>-6x=13/5

hay x=-13/30

11 tháng 10 2023

b:

ĐKXĐ: x<>0

 \(\dfrac{2}{x}+\dfrac{y}{3}=\dfrac{1}{6}\)

=>\(\dfrac{6+xy}{3x}=\dfrac{1}{6}\)

=>\(6\left(6+xy\right)=3x\)

=>\(x=2\left(6+xy\right)=12+2xy\)

=>\(x\left(1-2y\right)=12\)

mà x,y là các số nguyên

nên \(\left(x;1-2y\right)\in\left\{\left(12;1\right);\left(-12;-1\right);\left(4;3\right);\left(-4;-3\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(12;0\right);\left(-12;1\right);\left(4;-1\right);\left(-4;2\right)\right\}\)

c: ĐKXĐ: y<>-1

\(\dfrac{x}{3}+\dfrac{1}{y+1}=\dfrac{1}{6}\)

=>\(\dfrac{xy+x+3}{3\left(y+1\right)}=\dfrac{1}{6}\)

=>\(\dfrac{2\left(xy+x+3\right)}{6\left(y+1\right)}=\dfrac{y+1}{6\left(y+1\right)}\)

=>\(2xy+2x+6=y+1\)

=>\(2x\left(y+1\right)-\left(y+1\right)=-6\)

=>\(\left(2x-1\right)\left(y+1\right)=-6\)

mà x,y là các số nguyên

nên \(\left(2x-1;y+1\right)\in\left\{\left(1;-6\right);\left(-1;6\right);\left(3;-2\right);\left(-3;2\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(1;-7\right);\left(0;5\right);\left(2;-3\right);\left(-1;1\right)\right\}\)

1 tháng 9 2023

\(a,3-x=x+1,8\)

\(\Rightarrow-x-x=1,8-3\)

\(\Rightarrow-2x=-1,2\)

\(\Rightarrow x=0,6\)

\(b,2x-5=7x+35\)

\(\Rightarrow2x-7x=35+5\)

\(\Rightarrow-5x=40\)

\(\Rightarrow x=-8\)

\(c,2\left(x+10\right)=3\left(x-6\right)\)

\(\Rightarrow2x+20=3x-18\)

\(\Rightarrow2x-3x=-18-20\)

\(\Rightarrow-x=-38\)

\(\Rightarrow x=38\)

\(d,8\left(x-\dfrac{3}{8}\right)+1=6\left(\dfrac{1}{6}+x\right)+x\)

\(\Rightarrow8x-3+1=1+6x+x\)

\(\Rightarrow8x-3=7x\)

\(\Rightarrow8x-7x=3\)

\(\Rightarrow x=3\)

\(e,\dfrac{2}{9}-3x=\dfrac{4}{3}-x\)

\(\Rightarrow-3x+x=\dfrac{4}{3}-\dfrac{2}{9}\)

\(\Rightarrow-2x=\dfrac{10}{9}\)

\(\Rightarrow x=-\dfrac{5}{9}\)

1 tháng 9 2023

\(g,\dfrac{1}{2}x+\dfrac{5}{6}=\dfrac{3}{4}x-\dfrac{1}{2}\)

\(\Rightarrow\dfrac{1}{2}x-\dfrac{3}{4}x=-\dfrac{1}{2}-\dfrac{5}{6}\)

\(\Rightarrow-\dfrac{1}{4}x=-\dfrac{4}{3}\)

\(\Rightarrow x=\dfrac{16}{3}\)

\(h,x-4=\dfrac{5}{6}\left(6-\dfrac{6}{5}x\right)\)

\(\Rightarrow x-4=5-x\)

\(\Rightarrow x+x=5+4\)

\(\Rightarrow2x=9\)

\(\Rightarrow x=\dfrac{9}{2}\)

\(k,7x^2-11=6x^2-2\)

\(\Rightarrow7x^2-6x^2=-2+11\)

\(\Rightarrow x^2=9\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

\(m,5\left(x+3\cdot2^3\right)=10^2\)

\(\Rightarrow5\left(x+24\right)=100\)

\(\Rightarrow x+24=20\)

\(\Rightarrow x=-4\)

\(n,\dfrac{4}{9}-\left(\dfrac{1}{6^2}\right)=\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2+\dfrac{5}{12}\)

\(\Rightarrow\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2+\dfrac{5}{12}=\dfrac{4}{9}-\dfrac{1}{36}\)

\(\Rightarrow\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2+\dfrac{5}{12}=\dfrac{5}{12}\)

\(\Rightarrow\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2=0\)

\(\Rightarrow x-\dfrac{2}{3}=0\Rightarrow x=\dfrac{2}{3}\)

#\(Urushi\text{☕}\)

a: =>\(-\dfrac{6+x}{2}-\dfrac{3}{2}=2\)

=>-x-6-3=4

=>-x-9=4

=>-x=5

hay x=-5

b: =>(x+1)2=16

=>x+1=4 hoặc x+1=-4

=>x=3 hoặc x=-5

c: \(\Leftrightarrow\left(\dfrac{x-2}{27}-1\right)+\left(\dfrac{x-3}{26}-1\right)+\left(\dfrac{x-4}{25}-1\right)+\left(\dfrac{x-5}{24}-1\right)+\left(\dfrac{x-44}{5}+3\right)=0\)

=>x-29=0

hay x=29

10 tháng 12 2017

a)\(3\dfrac{1}{3}:2\dfrac{1}{2}-1< x< 7\dfrac{2}{3}.\dfrac{3}{7}+\dfrac{5}{2}\)

\(\dfrac{4}{3}-1< x< \dfrac{23}{7}+\dfrac{5}{2}\)

\(\dfrac{1}{3}< x< \dfrac{81}{14}\)

\(\dfrac{1}{3}=0,333333333333333333333333...\)

\(\dfrac{81}{14}=5,785714286\)

=>\(x=\left\{1;2;3;4;5\right\}\)

b)\(\dfrac{1}{2}-\left(\dfrac{1}{3}+\dfrac{1}{4}\right)< x< \dfrac{1}{48}-\left(\dfrac{1}{16}-\dfrac{1}{6}\right)\)

\(\dfrac{1}{2}-\dfrac{7}{12}< x< \dfrac{1}{48}+\dfrac{5}{48}\)

\(-\dfrac{1}{12}< x< \dfrac{1}{8}\)

\(-\dfrac{1}{12}=-0.08333333333333333\)

\(\dfrac{1}{8}=0.125\)

=> \(x=\left\{0\right\}\)

10 tháng 12 2017

a.\(3\dfrac{1}{3}:2\dfrac{1}{2}-1< x< 7\dfrac{2}{3}.\dfrac{3}{7}+\dfrac{5}{2}\)

\(\dfrac{4}{3}-1< x< \dfrac{23}{7}+\dfrac{5}{2}\)

\(\dfrac{1}{3}< x< \dfrac{81}{14}\)

\(0,3333...< x< 5,7857...\)

\(x\in Z\Rightarrow x\in\left\{1;2;3;4;5\right\}\)

Vậy........

b. \(\dfrac{1}{2}-\left(\dfrac{1}{3}+\dfrac{1}{4}\right)< x< \dfrac{1}{48}-\left(\dfrac{1}{16}-\dfrac{1}{6}\right)\)

\(\dfrac{-1}{12}< x< \dfrac{1}{8}\)

\(-0,0833...< x< 0,125\)

\(x\in Z\Rightarrow x\in\left\{0\right\}\)

Vậy............

24 tháng 8 2023

Hỏi rồi àm sao hỏi lại vậy

24 tháng 8 2023

\(\left(x-\dfrac{1}{5}\right):\left(x-1\dfrac{6}{7}\right)< 0\)

\(\Rightarrow\left(x-\dfrac{1}{5}\right):\left(x-\dfrac{13}{7}\right)< 0\)

\(TH1:\left\{{}\begin{matrix}x-\dfrac{1}{5}>0\\x-\dfrac{13}{7}< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{1}{5}\\x< \dfrac{13}{7}\end{matrix}\right.\) \(\Leftrightarrow\dfrac{1}{5}< x< \dfrac{13}{7}\)

 

\(TH2:\left\{{}\begin{matrix}x-\dfrac{1}{5}< 0\\x-\dfrac{13}{7}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x< \dfrac{1}{5}\\x>\dfrac{13}{7}\end{matrix}\right.\) (vô lý nên loại)

Vậy \(\dfrac{1}{5}< x< \dfrac{13}{7}\) thỏa mãn đề bài