K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2023

$(x^2-2)^2+4(x-1)^2-4(x^2-2)(x-1)=0$

$\Leftrightarrow(x^2-2)^2-4(x^2-2)(x-1)+4(x-1)^2=0$

$\Leftrightarrow(x^2-2)^2-2\cdot(x^2-2)\cdot2(x-1)+[2(x-1)]^2=0$

$\Leftrightarrow[(x^2-2)-2(x-1)]^2=0$

$\Leftrightarrow(x^2-2-2x+2)^2=0$

$\Leftrightarrow(x^2-2x)^2=0$

$\Leftrightarrow x^2-2x=0$

$\Leftrightarrow x(x-2)=0$

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Vậy: $x\in\{0;2\}$.

16 tháng 11 2021

a: \(x\in\left\{0;25\right\}\)

c: \(x\in\left\{0;5\right\}\)

21 tháng 7 2018

\(x\left(x-5\right)\left(x+5\right)-\left(x-2\right)\left(x^2+2x+4\right)=3\)

<=> \(x\left(x^2-25\right)-\left(x^3+2x^2+4x-2x^2-4x-8\right)=3\)

<=> \(x^3-25x-x^3-2x^2-4x+2x^2+4x+8=3\)

<=> \(-25x+8=3\)

<=> \(-25x=-5\)

<=> \(x=\frac{1}{5}\)

\(25x^2-2=0\)

<=> \(\left(5x\right)^2=2\)

<=> \(\hept{\begin{cases}5x=\sqrt{2}\\5x=-\sqrt{2}\end{cases}}\)

<=> \(\hept{\begin{cases}x=\frac{\sqrt{2}}{5}\\x=\frac{-\sqrt{2}}{5}\end{cases}}\)

\(\left(x+2\right)^2=\left(2x-1\right)^2\)

<=> \(\hept{\begin{cases}x+2=2x-1\\x+2=-2x+1\end{cases}}\)

<=> \(\hept{\begin{cases}-x=-3\\3x=-1\end{cases}}\)

<=> \(\hept{\begin{cases}x=3\\x=\frac{-1}{3}\end{cases}}\)

\(\left(x+2\right)^2-x^2+4=0\)

<=> \(\left(x+2\right)^2-\left(x^2-4\right)=0\)

<=> \(\left(x+2\right)^2-\left(x-2\right)\left(x+2\right)=0\)

<=> \(\left(x+2\right)\left(x+2-x+2\right)=0\)

<=> \(\left(x+2\right).4=0\)

<=> \(x+2=0\)

<=> \(x=-2\)

câu còn lại tương tự nha

13 tháng 9 2020

a) x(x - 2) + (x - 2) = 0

=> (x + 1)(x - 2) = 0

=> \(\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)

Vậy \(x\in\left\{-1;2\right\}\)

b) \(\frac{2}{3}x\left(x^2-4\right)=0\)

=> x(x2 - 4) = 0

=> \(\orbr{\begin{cases}x=0\\x^2-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x^2=2^2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm2\end{cases}}\)

g) (x + 2)2 - x + 4 = 0

=> x2 + 4x + 4 - x + 4 = 0

=> x2 + 3x + 8 = 0

=> (x2 + 3x + 9/4) + 23/4 = 0

=> (x + 3/2)2 + 23/4 \(\ge\frac{23}{4}>0\)

=> Phương trình vô nghiệm

h) (x + 2)2 = (2x - 1)2 

=> (x + 2)2 - (2x - 1)2 = 0

=> (x + 2 - 2x + 1)(x + 2 + 2x - 1) = 0

=> (-x + 3)(3x + 1) = 0

=> \(\orbr{\begin{cases}-x+3=0\\3x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-\frac{1}{3}\end{cases}}\)

=> \(x\in\left\{3;-\frac{1}{3}\right\}\)

13 tháng 9 2020

a) x( x - 2 ) + x - 2 = 0

⇔ x( x - 2 ) + 1( x - 2 ) = 0

⇔ ( x - 2 )( x + 1 ) = 0

⇔ \(\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)

b) 2/3x( x2 - 4 ) = 0

⇔ \(\orbr{\begin{cases}\frac{2}{3}x=0\\x^2-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm2\end{cases}}\)

g) ( x + 2 )2 - x + 4 = 0

⇔ x2 + 4x + 4 - x + 4 = 0

⇔ x2 + 3x + 8 = 0 (*)

Ta có : x2 + 3x + 8 = ( x2 + 3x + 9/4 ) + 23/4 = ( x + 3/2 )2 + 23/4 ≥ 23/4 > 0 ∀ x

=> (*) không xảy ra 

=> Pt vô nghiệm

h) ( x + 2 )2 = ( 2x - 1 )2

⇔ ( x + 2 )2 - ( 2x - 1 )2 = 0

⇔ [ ( x + 2 ) - ( 2x - 1 ) ][ ( x + 2 ) + ( 2x - 1 ) ] = 0

⇔ ( x + 2 - 2x + 1 )( x + 2 + 2x - 1 ) = 0

⇔ ( 3 - x )( 3x + 1 ) = 0

⇔ \(\orbr{\begin{cases}3-x=0\\3x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-\frac{1}{3}\end{cases}}\)

23 tháng 8 2021

3) \(x\left(x-4\right)+\left(x-4\right)^2=0\Leftrightarrow\left(x-4\right)\left(x+x-4\right)=0\Leftrightarrow2\left(x-4\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)

23 tháng 8 2021

4x.(x+1)-8(x+1)=0

(4x-8)(x+1)=0

suy ra x=2 hoặc x=-1

29 tháng 12 2023

a: (x-2)(x+2)-(x+1)2=1

=>\(x^2-4-\left(x^2+2x+1\right)=1\)

=>\(x^2-4-x^2-2x-1=1\)

=>-2x-5=1

=>-2x=6

=>\(x=\dfrac{6}{-2}=-3\)

b: Sửa đề:\(x^3-8-\left(x-2\right)\left(x-4\right)=0\)

=>\(\left(x^3-8\right)-\left(x-2\right)\left(x-4\right)=0\)

=>\(\left(x-2\right)\left(x^2+2x+4\right)-\left(x-2\right)\left(x-4\right)=0\)

=>\(\left(x-2\right)\left(x^2+2x+4-x+4\right)=0\)

=>\(\left(x-2\right)\left(x^2+x\right)=0\)

=>x(x+1)(x-2)=0

=>\(\left[{}\begin{matrix}x=0\\x+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=2\end{matrix}\right.\)

c: 3x(x-1)+1-x=0

=>3x(x-1)-(x-1)=0

=>(x-1)(3x-1)=0

=>\(\left[{}\begin{matrix}x-1=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)

19 tháng 11 2021

a. x( x+ 3)= 0 

⇔ x= 0 hoặc x+ 3= 0

⇔ x= 0          x = -3

b. x( 2x− 1)+ 2( 2x− 1) =0 

⇔ ( 2x− 1)(x+ 2) =0

⇔ 2x− 1 =0 hoặc  x+ 2 =0

⇔ 2x       =1          x      = -2

⇔   x       =\(\dfrac{1}{2}\)         x      = -2

 

`@` `\text {Ans}`

`\downarrow`

`1,`

`x^2 - 9 = 0`

`<=> x^2 = 0 + 9`

`<=> x^2 = 9`

`<=> x^2 = (+-3)^2`

`<=> x = +-3`

Vậy, `S = {3; -3}`

`2,`

`25 - x^2 = 0`

`<=> x^2 = 25 - 0`

`<=> x^2 = 25`

`<=> x^2 = (+-5)^2`

`<=> x = +-5`

Vậy,` S= {5; -5}`

`3,`

`-x^2 + 36 = 0`

`<=> -x^2 = 0 - 36`

`<=> -x^2 = -36`

`<=> x^2 = 36`

`<=> x^2 = (+-6)^2`

`<=> x = +-6`

Vậy, `S= {6; -6}`

`4,`

`4x^2 - 4 = 0`

`<=> 4x^2 = 0+4`

`<=> 4x^2 = 4`

`<=> x^2 = 4 \div 4`

`<=> x^2 = 1`

`<=> x^2 = (+-1)^2`

`<=> x = +-1`

Vậy, `S= {1; -1}`

`@` `\text {Kaizuu lv uuu}`

7 tháng 7 2023

Lớp \(8\) thì nên Vậy \(S=\left\{...\right\}\) nha em ☕