Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Dùng biến đổi tương đương chứng minh được:
\(\left(x^2+x+2\right)^2=x^4+5x^3+4x+4>x^4+2x^3+2x^2+x+3>\) \(x^4+2x^3+x^2=\left(x^2+x\right)^2\)
\(\Rightarrow x^4+2x^3+2x^2+x+3=\left(x^2+x+1\right)^2\)
\(\Leftrightarrow x^4+2x^3+2x^2+x+3=x^4+2x^3+3x^2+2x+1\)
\(\Leftrightarrow x^2+x-2=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
Vậy \(x=1\) hoặc \(x=-2\) thì phương trình trên là số chính phương
dùng phương pháp hệ số bất định ý bạn gọi đa thức đó là bình phương của đa thức (x^2+ax+b)^2 rồi khai triển là ok
Để A nguyên thì \(2x+3\in\left\{1;-1\right\}\)
=>\(x\in\left\{-1;-2\right\}\)
- \(\dfrac{1}{2x+3}\) \(\in\) Z \(\Leftrightarrow\) 1 \(⋮\) 2x + 2
\(\Leftrightarrow\) 2x + 3 \(\in\) Ư(1) = [ -1; 1)
=> 2x + 3 = -1 => x = -2;
2x + 3 = = 1 => x = -1
x \(\in\) { -2; -1}
a) x ≠ 2 và x ≠ 0
b) Rút gọn được Q = x + 1 2 x
c) Thay x = 2017 (TMĐK) vào Q ta được Q = 1009 2017
\(\dfrac{x^2+2x+1}{x^2-1}=\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{x-1}=\dfrac{x-1+2}{x-1}=1+\dfrac{2}{x-1}\)
vậy để biểu thức là số nguyên thì
`2` phải chia hết cho `x-1`
`=>x-1` thuộc tập hợp ước của 2
mà `x` thuộc `Z` nên ta có bảng sau
x-1 | 1 | -1 | 2 | -2 |
x | 2(tm) | 0(tm) | 3(tm) | -1(tm) |
vậy \(x\in\left\{2;0;3;-1\right\}\)
B=(x+1)^2/(x+1)(x-1)=(x+1)/(x-1)
Để B nguyên thì x-1+2 chia hết cho x-1
=>\(x-1\in\left\{1;-1;2;-2\right\}\)
=>\(x\in\left\{2;0;3\right\}\)
\(\dfrac{8-2x}{x^2+x-20}=-\dfrac{2\left(4-x\right)}{\left(4-x\right)\left(x+5\right)}=\dfrac{-2}{x+5}\)
Để biểu thức trên nhận giá trị dương khi
\(x+5< 0\)do -2 < 0
\(\Leftrightarrow x< -5\)
A = x^4 - x^2 + 2x + 2 = (x^4 - x^2) + (2x + 2)
= x^2(x^2 - 1) + 2(x + 1) = x^2(x - 1)(x + 1) + 2(x + 1)
= (x + 1)(x^3 - x^2 + 2)
= (x + 1)[(x^3 + 1) - (x^2 - 1)]
= (x + 1)[(x + 1)(x^2 - x + 1) - (x - 1)(x + 1)]
= (x + 1)^2.(x^2 - 2x + 2)
= (x + 1)^2.[(x - 1)^2 + 1]
Với x = - 1 => A = 0 (nhận)
Với x # -1
Ta có : A = k^2 với k là số tự nhiên
=> (x + 1)^2.[(x - 1)^2 + 1] = k^2
=> (x - 1)^2 + 1 phải là số chính phương
=> (x - 1)^2 + 1 = m^2 (với m là số tự nhiên và m^2 >= 1<=> m > 0)
<=> (x - 1)^2 - m^2 = - 1
<=> (x - 1 - m)(x -1 + m) = -1 = 1.(-1)
Vì m > 0 => x - 1 + m > x - 1 - m
x , m nguyên => x - 1 - m và x - 1 + m là số nguyên
=> x - 1 + m = 1 và x - 1 - m = -1
<=> x + m = 2 và x - m = 0
<=> x = m = 1
=> A = 1^4 - 1^2 + 2.1 + 2 = 4 là số chính phương vói x = 1
Vậy x = 1 và x = -1 thì A là số chính phương
\(\frac{2x+5}{x+5}\in Z\Leftrightarrow2x+5⋮x+5\Leftrightarrow-5⋮x+5\Leftrightarrow x+5\in\left\{-1;1-5;5\right\}\Leftrightarrow x\in\left\{-6;-4;0;-10\right\}\)
TL:
\(\frac{2x+5}{x+5}=\frac{2x+10-5}{x+5}\)
\(=2-\frac{5}{x+5}\)
Để BT đạt GT nguyên thì \(x+5\inƯ\left(5\right)\)
\(\Rightarrow x+5\in\left\{\pm1;\pm5\right\}\)
\(\Rightarrow x\in\left\{-4;-6;0;-10\right\}\)
Vậy.........