Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\left(x+y+z\right)^2=x^2+y^2+z^2\Rightarrow xy+yz+zx=0\left(1\right)\)
Đặt xy=a ; yz=b ; xz =c
=> \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{\left(xy\right)^3+\left(yz\right)^3+\left(xz\right)^3}{\left(xyz\right)^3}\)
Xét \(\left(xy\right)^3+\left(yz\right)^3+\left(xz\right)^3=a^3+b^3+c^3\)
mà \(a^3+b^3+c^3=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc+3abc\)
\(=\left(a+b+c\right)^3-3ab\left(a+b\right)+3\left(a+b\right)c\left(a+b+c\right)-3abc+3abc\)
\(=\left(a+b+c\right)^3-3abc\left(a+b+c\right)+3\left(a+b\right)c\left(a+b+c\right)+3abc\)
Mà ta có \(a+b+c=0\Rightarrow a^3+b^3+c^3=3abc\)
=> \(\left(xy\right)^3+\left(yz\right)^3+\left(xz\right)^3=3\left(xyz\right)^2\)
=> \(\frac{\left(xy\right)^3+\left(yz\right)^3+\left(xz\right)^3}{\left(xyz\right)^3}=\frac{3\left(xyz\right)^2}{\left(xyz\right)^3}=\frac{3}{xyz}\left(dpcm\right)\)
Bạn rút gọn vài bước đi nhé :3 mk trình bày ko hay cho lắm :3 nhớ k giùm mk nha :3
2.
Áp dụng bất đẳng thức Cauchy - schwarz ( hay còn gọi là bất đẳng thức Cosi ):
\(\frac{x^2}{y+1}+\frac{y^2}{z+1}+\frac{z^2}{x+1}=\frac{\left(x+y+z\right)^2}{x+y+z+3}=\frac{9}{3+3}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra khi x = y = z = 1
1:
Áp dụng bất đẳng thức Cô si:
\(x\left(y+\frac{x}{1+y}\right)+y\left(z+\frac{y}{1+z}\right)+z\left(x+\frac{z}{1+x}\right)\)
\(=\left(x+y+z\right)\left[\left(y+\frac{x}{1+y}\right)+\left(z+\frac{y}{1+z}\right)+\left(x+\frac{z}{1+x}\right)\right]\)
\(=1\left[\left(x+y+z\right)+\left(\frac{x}{1+y}+\frac{y}{1+z}+\frac{z}{1+x}\right)\right]\)
\(=1\left[1+\left(\frac{x+y+z}{1+y+1+z+1+x}\right)\right]\)
\(=1\left[1+\left(\frac{1}{3+\left(x+y+z\right)}\right)\right]\)
\(=1\left[1+\frac{1}{4}\right]\)
\(=1+\frac{5}{4}=\frac{9}{4}\)
Dấu "=" xảy ra khi x = y = z = \(\frac{1}{3}\)
\(x\left(\frac{1}{y}+\frac{1}{z}\right)+y\left(\frac{1}{z}+\frac{1}{x}\right)+z\left(\frac{1}{x}+\frac{1}{y}\right)=-2\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
Ta lại có:
\(x^3+y^3+z^3=\left(x+y+z\right)^3-3\left(x+y\right)\left(y+z\right)\left(z+x\right)=\left(x+y+z\right)^3=1\)
\(\Leftrightarrow x+y+z=1\)
Làm nốt
\(\frac{1}{x+xy+1}+\frac{1}{y+yz+1}+\frac{1}{z+zx+1}\)
\(=\frac{xyz}{x\left(1+y+yz\right)}+\frac{1}{1+y+yz}+\frac{xyz}{xz\left(1+y+yz\right)}\)
\(=\frac{yz}{1+y+yz}+\frac{1}{1+y+yz}+\frac{y}{1+y+yz}\)
\(=\frac{1+y+yz}{1+y+yz}\)
\(=1\)
\(\frac{1}{x+y+z}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{3}\)
rồi quy đồng biến đổi ra : (x + y ) ( y + z ) ( z + x ) = 0
=> x = -y hoặc y = -z hoặc z = -x
kết hợp với 2x2 + y = 1 rồi giải ra sau đó thay vào x + y + z = 3 rồi tìm ra x,y,z
như thế bạn làm nhá