K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2020

a) \(\left(2x+1\right)^3=27\)

\(\Leftrightarrow2x+1=3\)

\(\Leftrightarrow x=1\)

b) \(\left(2x-1\right)^3=125\)

\(\Leftrightarrow2x-1=5\)

\(\Leftrightarrow x=3\)

c) \(\left(x+1\right)^4=\left(2x\right)^4\)

\(\Leftrightarrow x+1=2x\)

\(\Leftrightarrow x=1\)

d) \(\left(2x-1\right)^5=x^5\)

\(\Leftrightarrow2x-1=x\)

\(\Leftrightarrow x=1\)

21 tháng 8 2020

a. ( 2x + 1 )3 = 27

<=> ( 2x + 1 )3 = 33

<=> 2x + 1 = 3

<=> 2x = 2

<=> x = 1

b. ( 2x - 1 )3 = 125

<=> ( 2x - 1 )3 = 53

<=> 2x - 1 = 5

<=> 2x = 6

<=> x = 3

c. ( x + 1 )4 = 2x4

<=> x + 1 = 2x

<=> x = 1

d. ( 2x - 1 )5 = x5

<=> 2x - 1 = x

<=> x = 1

21 tháng 8 2020

a. ( 2x + 1 )2 = 49

<=> ( 2x + 1 )2 = 72

<=> 2x + 1 = 7

<=> x = 3

b. ( 2x - 1 )4 = 81

<=> ( 2x - 1 )4 = 34

<=> 2x - 1 = 3

<=> x = 2

c. ( x + 1 )3 = 2x3

<=> x + 1 = 2x

<=> x = 1

d. ( 2x + 1 )3 = 3x3

<=> 2x + 1 = 3x

<=> x = 1

21 tháng 8 2020

( 2x + 1 )2 = 49

<=> ( 2x + 1 )2 = ( ±7 )2

<=> \(\orbr{\begin{cases}2x+1=7\\2x+1=-7\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-4\end{cases}}\)

( 2x - 1 )4 = 81

<=> ( 2x - 1 )4 = ( ±3 )4

<=> \(\orbr{\begin{cases}2x-1=3\\2x-1=-3\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)

( x + 1 )3 = ( 2x )3

<=> x + 1 = 2x

<=> x - 2x = -1

<=> -x = -1

<=> x = 1

( 2x + 1 )3 = ( 3x )3

<=> 2x + 1 = 3x

<=> 2x - 3x = -1

<=> -x = -1

<=>  x = 1

1 tháng 10 2016

\(\left(2x-1\right)^2=\left(2x-1\right)^3\)

\(\Leftrightarrow\left(2x-1\right)^2-\left(2x-1\right)^3=0\)

\(\Leftrightarrow\left(2x-1\right)^2-\left[2x-1+1\right]=0\)

\(\Leftrightarrow\left(2x-1\right)^2-2x=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\2x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=1\\x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=0\end{cases}}\)

Vậy \(x\in\left\{\frac{1}{2};0\right\}\)

12 tháng 10 2021

Bài 1

a) \(x=x^5\)

\(x^5-x=0\)

\(x\left(x^4-1\right)=0\)

\(x=0\) hoặc \(x^4-1=0\)

\(x^4-1=0\)

\(x^4=1\)

\(x=1\)

Vậy x = 0; x = 1

b) \(x^4=x^2\)

\(x^4-x^2=0\)

\(x^2\left(x^2-1\right)=0\)

\(x^2=0\) hoặc \(x^2-1=0\)

*) \(x^2=0\)

\(x=0\)

*) \(x^2-1=0\)

\(x^2=1\)

\(x=1\)

Vậy \(x=0\)\(x=1\)

c) \(\left(x-1\right)^3=x-1\)

\(\left(x-1\right)^3-\left(x-1\right)=0\)

\(\left(x-1\right)\left[\left(x-1\right)^2-1\right]=0\)

\(x-1=0\) hoặc \(\left(x-1\right)^2-1=0\)

*) \(x-1=0\)

\(x=1\)

*) \(\left(x-1\right)^2-1=0\)

\(\left(x-1\right)^2=1\)

\(x-1=1\) hoặc \(x-1=-1\)

**) \(x-1=1\)

\(x=2\)

**) \(x-1=-1\)

\(x=0\)

Vậy \(x=0\)\(x=1\)\(x=2\)

 

Bài 1: 

a) Ta có: \(\left(2x-1\right)^{20}=\left(2x-1\right)^{18}\)

\(\Leftrightarrow\left(2x-1\right)^{20}-\left(2x-1\right)^{18}=0\)

\(\Leftrightarrow\left(2x-1\right)^{18}\left[\left(2x-1\right)^2-1\right]=0\)

\(\Leftrightarrow\left(2x-1\right)^{18}\cdot\left(2x-2\right)\cdot2x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)

b) Ta có: \(\left(2x-3\right)^2=9\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=3\\2x-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)

c) Ta có: \(\left(x-5\right)^2=\left(1-3x\right)^2\)

\(\Leftrightarrow\left(x-5\right)^2-\left(3x-1\right)^2=0\)

\(\Leftrightarrow\left(x-5-3x+1\right)\left(x-5+3x-1\right)=0\)

\(\Leftrightarrow\left(-2x-4\right)\left(4x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{2}\end{matrix}\right.\)

Bài 2: 

a) \(15^{20}-15^{19}=15^{19}\left(15-1\right)=15^{19}\cdot14⋮14\)

b) \(3^{20}+3^{21}+3^{22}=3^{20}\left(1+3+3^2\right)=3^{20}\cdot13⋮13\)

c) \(3+3^2+3^3+...+3^{2007}\)

\(=3\left(1+3+3^2\right)+...+3^{2005}\left(1+3+3^2\right)\)

\(=13\left(3+...+3^{2005}\right)⋮13\)

2 tháng 8 2023

chịu

19 tháng 12 2023

Chịu 

23 tháng 8 2023

a) \(4^n=4096\Rightarrow4^n=4^6\Rightarrow n=6\)

b) \(5^n=15625\Rightarrow5^n=5^6\Rightarrow n=6\)

c) \(6^{n+3}=216\Rightarrow6^{n+3}=6^3\Rightarrow n+3=3\Rightarrow n=0\)

d) \(x^2=x^3\Rightarrow x^3-x^2=0\Rightarrow x^2\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

e) \(3^{x-1}=27\Rightarrow3^{x-1}=3^3\Rightarrow x-1=3\Rightarrow x=4\)

f) \(3^{x+1}=9\Rightarrow3^{x+1}=3^2\Rightarrow x+1=2\Rightarrow x=1\)

g) \(6^{x+1}=36\Rightarrow6^{x+1}=6^2\Rightarrow x+1=2\Rightarrow x=1\)

h) \(3^{2x+1}=27\Rightarrow3^{2x+1}=3^3\Rightarrow2x+1=3\Rightarrow2x=2\Rightarrow x=1\)

i) \(x^{50}=x\Rightarrow x^{50}-x=0\Rightarrow x\left(x^{49}-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x^{49}-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x^{49}=1=1^{49}\end{matrix}\right.\)  \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

23 tháng 8 2023

4n  =  4096 

4n = 212

n = 12

5n = 15625 

5n = 56

n   = 6

6n+3 = 216

6n+3 = 23.33

6n+3 = 63

n + 3 = 3

 

 

6 tháng 10 2023

Bài 1:

a) \(4^{x+2}+4^x=68\)

\(\Rightarrow4^x\cdot\left(4^2+1\right)=68\)

\(\Rightarrow4^x\cdot17=68\)

\(\Rightarrow4^x=\dfrac{68}{17}\)

\(\Rightarrow4^x=4\)

\(\Rightarrow4^x=4^1\)

\(\Rightarrow x=1\)

b) \(5\cdot2^{x+4}-3\cdot2^x=308\)

\(\Rightarrow2^x\cdot\left(5\cdot2^4-3\right)=308\)

\(\Rightarrow2^x\cdot\left(5\cdot16-3\right)=308\)

\(\Rightarrow2^x\cdot77=308\)

\(\Rightarrow2^x=\dfrac{308}{77}\)

\(\Rightarrow2^x=4\)

\(\Rightarrow2^x=2^2\)

\(\Rightarrow x=2\)

c) \(4\cdot3^{x+1}+7\cdot3^x=513\)

\(\Rightarrow3^x\cdot\left(4\cdot3+7\right)=513\)

\(\Rightarrow3^x\cdot19=513\)

\(\Rightarrow3^x=\dfrac{513}{19}\)

\(\Rightarrow3^x=27\)

\(\Rightarrow3^x=3^3\)

\(\Rightarrow x=3\)

d) \(5^{x+4}-5^x=3120\)

\(\Rightarrow5^x\cdot\left(5^4-1\right)=3120\)

\(\Rightarrow5^x\cdot\left(625-1\right)=3120\)

\(\Rightarrow5^x\cdot624=3120\)

\(\Rightarrow5^x\cdot\dfrac{3120}{624}\)

\(\Rightarrow5^x=5\)

\(\Rightarrow5^x=5^1\)

\(\Rightarrow x=1\)

f) \(3\cdot4^{2x+1}-16^x=2816\)

\(\Rightarrow3\cdot4^{2x+1}-\left(4^2\right)^x=2816\)

\(\Rightarrow3\cdot4^{2x+1}-4^{2x}=2816\)

\(\Rightarrow4^{2x}\cdot\left(3\cdot4-1\right)=2816\)

\(\Rightarrow4^{2x}\cdot11=2816\)

\(\Rightarrow4^{2x}=\dfrac{2816}{11}\)

\(\Rightarrow4^{2x}=256\)

\(\Rightarrow\left(2^2\right)^{2x}=2^8\)

\(\Rightarrow2^{4x}=2^8\)

\(\Rightarrow4x=8\)

\(\Rightarrow x=2\)

Bài 2:

\(2^x+124=5^y\)

\(\Rightarrow5^y-2^x=124\)

\(\Rightarrow5^y-2^x=125-1\)

\(\Rightarrow\left\{{}\begin{matrix}5^y=125\\2^x=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}5^y=5^3\\2^x=2^0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y=3\\x=0\end{matrix}\right.\)

Vậy: .... 

22 tháng 10 2019

1. \(6x^3-8=40\\ 6x^3=48\\ x^3=8\\ \Rightarrow x=2\)Vậy x = 2

2. \(4x^5+15=47\\ 4x^5=32\\ x^5=8\\ \Rightarrow x\in\varnothing\left(\text{vì }x\in N\right)\)Vậy x ∈ ∅

3. \(2x^3-4=12\\ 2x^3=16\\ x^3=8\\ \Rightarrow x=2\)Vậy x = 2

4. \(5x^3-5=0\\ 5x^3=5\\ x^3=1\\ \Rightarrow x=1\)Vậy x = 1

5. \(\left(x-5\right)^{2016}=\left(x-5\right)^{2018}\\ \Rightarrow\left[{}\begin{matrix}x-5=0\\x-5=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=6\end{matrix}\right.\)Vậy \(x\in\left\{5;6\right\}\)

6. \(\left(3x-2\right)^{20}=\left(3x-1\right)^{20}\\ \Rightarrow3x-2=3x-1\\ 3x-3x=2-1\\ 0=1\left(\text{vô lí}\right)\)Vậy x ∈ ∅

7. \(\left(3x-1\right)^{10}=\left(3x-1\right)^{20}\\ \left(3x-1\right)^{10}=\left[\left(3x-1\right)^2\right]^{10}\\ \Rightarrow\left(3x-1\right)^2=3x-1\\ \left(3x-1\right)^2-\left(3x-1\right)=0\\ \left(3x-1\right)\left[\left(3x-1\right)-1\right]=0\\ \left(3x-1\right)\left(3x-2\right)=0\\ \Rightarrow\left[{}\begin{matrix}3x-1=0\\3x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}3x=1\\3x=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{1}{3}\left(\text{loại vì }x\in N\right)\\x=\frac{2}{3}\left(\text{loại vì }x\in N\right)\end{matrix}\right.\)Vậy x ∈ ∅

8. \(\left(2x-1\right)^{50}=2x-1\\ \left(2x-1\right)^{50}-\left(2x-1\right)=0\\ \left(2x-1\right)\left[\left(2x-1\right)^{49}-1\right]=0\\ \Rightarrow\left[{}\begin{matrix}2x-1=0\\\left(2x-1\right)^{49}=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=1\\2x-1=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\frac{1}{2}\left(\text{loại vì }x\in N\right)\\x=1\left(t/m\right)\end{matrix}\right.\)Vậy x = 1

9. \(\left(\frac{x}{3}-5\right)^{2000}=\left(\frac{x}{3}-5\right)^{2008}\\ \left(\frac{x}{3}-5\right)^{2008}-\left(\frac{x}{3}-5\right)^{2000}=0\\ \left(\frac{x}{3}-5\right)^{2000}\left[\left(\frac{x}{3}-5\right)^8-1\right]=0\\ \Rightarrow\left[{}\begin{matrix}\left(\frac{x}{3}-5\right)^{2000}=0\\\left(\frac{x}{3}-5\right)^8=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\frac{x}{3}-5=0\\\frac{x}{3}-5=1\\\frac{x}{3}-5=-1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\frac{x}{3}=5\\\frac{x}{3}=6\\\frac{x}{3}=4\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\cdot3=15\\x=6\cdot3=18\\x=4\cdot3=12\end{matrix}\right.\)Vậy \(x\in\left\{15;18;12\right\}\)

22 tháng 10 2019

\(1.6x^3-8=40\\ \Leftrightarrow6x^3=48\\ \Leftrightarrow x^3=8\Leftrightarrow x^3=2^3=\left(-2\right)^3\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

Vậy \(x\in\left\{2;-2\right\}\)

\(2.4x^3+15=47\) (T nghĩ đề là mũ 3)

\(\Leftrightarrow4x^3=32\Leftrightarrow x^3=8=2^3=\left(-2\right)^3\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

Vậy \(x\in\left\{2;-2\right\}\)

Câu 3, 4 tương tự nhé.